No CrossRef data available.
Published online by Cambridge University Press: 21 May 2025
In this paper, we consider a conilpotent coalgebra $C$ over a field
$k$. Let
$\Upsilon :\ C{{-\mathsf{Comod}}}\longrightarrow C^*{{-\mathsf{Mod}}}$ be the natural functor of inclusion of the category of
$C$-comodules into the category of
$C^*$-modules, and let
$\Theta :\ C{{-\mathsf{Contra}}}\longrightarrow C^*{{-\mathsf{Mod}}}$ be the natural forgetful functor. We prove that the functor
$\Upsilon$ induces a fully faithful triangulated functor on bounded (below) derived categories if and only if the functor
$\Theta$ induces a fully faithful triangulated functor on bounded (above) derived categories, and if and only if the
$k$-vector space
$\textrm {Ext}_C^n(k,k)$ is finite-dimensional for all
$n\ge 0$. We call such coalgebras “weakly finitely Koszul”.