Hostname: page-component-5b777bbd6c-j65dx Total loading time: 0 Render date: 2025-06-18T23:44:38.805Z Has data issue: false hasContentIssue false

Brain stroke location detection using a novel monopole antenna with triple hollow rectangular patches and a hexagonal slotted ground plane utilizing a delay and sum algorithm

Published online by Cambridge University Press:  15 May 2025

Athul O. Asok
Affiliation:
Department of Electrical Engineering, Indian Institute of Technology Palakkad, Palakkad, KL, India
M. Sowmya
Affiliation:
Department of Electronics and Communication Engineering, NSS College of Engineering Palakkad, Palakkad, KL, India
A.I. Harikrishnan
Affiliation:
Department of Electronics and Communication Engineering, NSS College of Engineering Palakkad, Palakkad, KL, India
M. Sumi
Affiliation:
Department of Electronics and Communication Engineering, NSS College of Engineering Palakkad, Palakkad, KL, India
Sukomal Dey*
Affiliation:
Department of Electrical Engineering, Indian Institute of Technology Palakkad, Palakkad, KL, India
*
Corresponding author: Sukomal Dey; Email: sukomal.iitpkd@gmail.com

Abstract

In the advanced era of compact and convenient devices, electromagnetic microwave brain imaging systems have emerged as substitutes for large and bulky imaging devices such as X-rays, CT scans, MRIs, and ultrasounds for diagnosing brain disorders. This article introduces a compact monopole antenna specifically tailored for microwave imaging in brain stroke detection. The bidirectional antenna incorporates a triple hollow rectangular patch and a hexagonal slotted ground for enhanced performance. The antenna is constructed on an FR-4 substrate with a thickness of 1.6 mm. The design is finalized using CST, with parameters adjusted to achieve the desired bandwidth and gain performance. The antenna provides a bandwidth of 2.16 GHz, spanning from 1.35 to 3.51 GHz, with a return loss |S11| < 10 dB (VSWR < 2) and a peak gain of 5.1 dBi at 3.5 GHz, while maintaining stable radiation characteristics across the entire frequency range. Simulation results indicate that the proposed antenna is well-suited for microwave-based brain stroke detection and imaging applications. The fabricated antenna has been tested for brain stroke detection with an innovative setup in the lab. It is observed that the stroke models have been detected clearly.

Type
Research Paper
Copyright
© The Author(s), 2025. Published by Cambridge University Press in association with The European Microwave Association.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Frykberg, RG, Lavery, LA, Pham, H, Harvey, C, Harkless, L and Veves, A (1998) Role of neuropathy and high foot pressures in diabetic foot ulceration. Diabetes Care 21, 1714. doi:10.2337/diacare.21.10.1714CrossRefGoogle ScholarPubMed
Fernando, ME, Crowther, RG, Lazzarini, PA, Sangla, KS, Buttner, P and Gait, Golledge J. (2016) Gait parameters of people with diabetes-related neuropathic plantar foot ulcers. Clinical Biomechanics 37, 98107. doi:10.1016/j.clinbiomech.2016.06.006CrossRefGoogle ScholarPubMed
Boulton, A (2004) The diabetic foot: From art to science. The 18th Camillo Golgi lecture. Diabetologia 47(8), 13431353. doi:10.1007/s00125-004-1463-yCrossRefGoogle ScholarPubMed
Farahpour, N, Jafarnezhad, A, Damavandi, M, Bakhtiari, A and Allard, P. (2016) Gait ground reaction force characteristics of low back pain patients with pronated foot and able-bodied individuals with and without foot pronation. Journal of Biomechanics 49(9), 17051710. doi:10.1016/j.jbiomech.2016.03.056CrossRefGoogle ScholarPubMed
Sacco, IC, Picon, AP, Macedo, DO, Butugan, MK, Watari, R and Sartor, CD (2015) Alterations in the lower limb joint moments precede the peripheral neuropathy diagnosis in diabetes patients. Diabetes Technol. Ther 17(6), 405412.Google Scholar
Alam, U, Riley, DR, Jugdey, RS, Azmi, S, Rajbhandari, S, D’Août, K and Malik, RA (2017) Diabetic neuropathy and gait: A review. Diabetes Therapy: Research, Treatment and Education of Diabetes and Related Disorders 8(6), 12531264. doi:10.1007/s13300-017-0295-yCrossRefGoogle ScholarPubMed
Corbee, RJ, Maas, H, Doornenbal, A and Hazewinkel, HA (2014) Forelimb and hindlimb ground reaction forces of walking cats: Assessment and comparison with walking dogs. The Veterinary Journal 202(1), 116127. doi:10.1016/j.tvjl.2014.07.001CrossRefGoogle ScholarPubMed
Vilela, P and Rowley, H (2017) A. Brain ischemia: CT and MRI techniques in acute ischemic stroke. European Journal of Radiology 96, 162172. doi:10.1016/j.ejrad.2017.08.014CrossRefGoogle ScholarPubMed
Stroke Statistics [Online]. Available: http://www.strokecenter.org/patients/about-stroke/stroke-statistics/ (accessed 2 February 2022).Google Scholar
Tournier, P-H, Bonazzoli, M, Dolean, V, Rapetti, F, Hecht, F, Nataf, F, Aliferis, I, El Kanfoud, I, Migliaccio, C, De Buhan, M and Darbas, M. (2017) Numerical modeling and high-speed parallel computing: New perspectives on tomographic microwave imaging for brain stroke detection and monitoring. IEEE Antennas and Propagation Magazine 59, 98110. doi:10.1109/MAP.2017.2731199CrossRefGoogle Scholar
Mohammed, BJ, Abbosh, AM, Mustafa, S and Ireland, D (2013) Microwave system for head imaging. IEEE Transactions on Instrumentation and Measurement 63(1), 117123. doi:10.1109/TIM.2013.2277562CrossRefGoogle Scholar
Fhager, A, Candefjord, S, Elam, M and Persson, M (2018) Microwave diagnostics ahead: Saving time and the lives of trauma and stroke patients. IEEE Microwave Magazine 19(3), 7890. doi:10.1109/MMM.2018.2801646CrossRefGoogle Scholar
Casu, MR, Vacca, M, Tobon, JA, Pulimeno, A, Sarwar, I, Solimene, R and Vipiana, F (2017) A COTS-based microwave imaging system for breast-cancer detection. IEEE Transactions on Biomedical Circuits and Systems 11(4), 804814. doi:10.1109/TBCAS.2017.2703588CrossRefGoogle ScholarPubMed
Chandra, R, Zhou, H, Balasingham, I and Narayanan, RM (2015) On the opportunities and challenges in microwave medical sensing and imaging. IEEE Transactions on Biomedical Engineering 62(7), 16671682. doi:10.1109/TBME.2015.2432137CrossRefGoogle ScholarPubMed
Shao, W and McCollough, T (2020) Advances in microwave near-field imaging: Prototypes, systems, and applications. IEEE Microwave Magazine 21(5), 94119. doi:10.1109/MMM.2020.2971375CrossRefGoogle ScholarPubMed
Li, Y, Porter, E, Santorelli, A, Popović, M and Coates, M (2017) Microwave breast cancer detection via cost-sensitive ensemble classifiers: Phantom and patient investigation. Biomedical Signal Processing and Control 31, 366376. doi:10.1016/j.bspc.2016.09.003CrossRefGoogle Scholar
Zasler, ND, Katz, DI and Zafonte, RD (2013) Brain Injury Medicine: Principle and Practice, second edition. In Demos Medical New York.Google Scholar
Jauch, EC, Saver, JL, Adams, HP Jr, Bruno, A, Connors, JJ, Demaerschalk, BM, Khatri, P, McMullan, PW Jr, Qureshi, AI, Rosenfield, K and Scott, PA (2013) Guidelines for the early management of patients with acute ischemic stroke: A guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 44(3), 870947. doi:10.1161/STR.0b013e318284056aCrossRefGoogle ScholarPubMed
Ireland, D and Bialkowski, M (2011) Microwave head imaging for stroke detection. Progress in Electromagnetics Research M 21, 163175. doi:10.2528/PIERM11082907CrossRefGoogle Scholar
Semenov, SY and Corfield, DR (2008) Microwave tomography for brain imaging: Feasibility assessment for stroke detection. International Journal of Antennas and Propagation. . doi:10.1155/2008/254830CrossRefGoogle Scholar
Tobon Vasquez, JA, Scapaticci, R, Turvani, G, Dassano, G, Joachimowicz, N, Duchêne, B, Casu, MR, Crocco, L and Vipiana, F (2018) First Experimental Assessment of a Microwave Imaging Prototype for Cerebrovascular Diseases Monitoring. International Conference on Electromagnetics in Advanced Applications (ICEAA). Cartagena, Colombia, 400401. doi:10.1109/ICEAA.2018.8520397CrossRefGoogle Scholar
Semenov, S (2009) Microwave tomography: Review of the progress towards clinical applications. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences 367, 30213042. doi:10.1098/rsta.2009.0092Google ScholarPubMed
Wu, Y and Pan, D (2018) Directional Folded Antenna for Brain Stroke Detection Based on Classification Algorithm. IEEE 4th Information Technology and Mechatronics Engineering Conference (ITOEC). Chongqing, China, 499503. doi:10.1109/ITOEC.2018.8740428CrossRefGoogle Scholar
Mobashsher, AT, Bialkowski, KS, Abbosh, AM and Crozier, S (2016) Design and experimental evaluation of a non-invasive microwave head imaging system for intracranial haemorrhage detection. PLoS One 11(4), 129. doi:10.1371/journal.pone.0152351CrossRefGoogle ScholarPubMed
Mobashsher, AT, Abbosh, AM and Wang, Y (2014) Microwave system to detect traumatic brain injuries using compact unidirectional antenna and wideband transceiver with verification on realistic head phantom. IEEE Transactions on Microwave Theory & Techniques 62(9), 18261836. doi:10.1109/tmtt.2014.2342669CrossRefGoogle Scholar
Islam, MS, Tariqul Islam, M and Almutairi, AF (2022) A portable non-invasive microwave based head imaging system using compact metamaterial loaded 3D unidirectional antenna for stroke detection. Scientific Reports 12(1), 8895. doi:10.1038/s41598-022-12860-8CrossRefGoogle ScholarPubMed
Bhardwaj, P and Kumar Badhai, R (2021) Compact wideband folded strip monopole antenna for brain stroke detection. International Journal of Microwave and Wireless Technologies 13(9), 937946. doi:10.1017/S1759078720001579CrossRefGoogle Scholar
Sohani, B, Khalesi, B, Ghavami, N, Ghavami, M, Dudley, S, Rahmani, A and Tiberi, G (2020) Detection of haemorrhagic stroke in simulation and realistic 3-D human head phantom using microwave imaging. Biomedical Signal Processing and Control 61, 110. doi:10.1016/j.bspc.2020.102001CrossRefGoogle Scholar
Asok, AO, Sowmya, M, Ummer Faisa, V, Fathima, FK, Harikrishnan, AI, Sumi, M and Dey, S (2025) Compact monopole antenna with cross shaped slot for microwave brain tumor detection applications. Progress in Electromagnetics Research B 110, 4356. doi:10.2528/PIERB24102603CrossRefGoogle Scholar
Talukder, MS, Samsuzzaman, M, Islam, MT, Azim, R, Mahmud, MZ and Islam, MT (2021) Compact ellipse shaped patch with ground slotted broadband monopole patch antenna for head imaging applications. Chinese Journal of Physics 72, 310326. doi:10.1016/j.cjph.2021.05.005CrossRefGoogle Scholar
Samsuzzaman, M, Fakeeh, KA, Talukder, MS, Hasan, MM, Rahman, MH, Alam, MM, Shaik, MS and Islam, MT (2021) A double hollow rectangular‐shaped patch and with the slotted ground plane monopole wideband antenna for microwave head imaging applications. International Journal of Communication Systems 34(16). doi10.1002/dac.4958CrossRefGoogle Scholar
Rokunuzzaman, M, Ahmed, A, Baum, TC and Rowe, WS (2019) Compact 3-D antenna for medical diagnosis of the human head. IEEE Transactions on Antennas and Propagation 67(8), 50935103. doi:10.1109/TAP.2019.2908066CrossRefGoogle Scholar
Alqadami, ASM, Bialkowski, K and Abbosh, A (2018) Flexible Quasi-Yagi antenna arrays for wearable electromagnetic head imaging based on polymer technology. IEEE Australian Microwave Symposium.CrossRefGoogle Scholar
Rodriguez-Duarte, DO, Vasquez, JAT, Scapaticci, R, Crocco, L and Vipiana, F (2020) Brick-shaped antenna module for microwave brain imaging systems. IEEE Antennas and Wireless Propagation Letters 19(12), 20572061. doi:10.1109/LAWP.2020.3022161CrossRefGoogle Scholar
Alam, MM, Talukder, MS, Samsuzzaman, M, Khan, AI, Kasim, N, Mehedi, IM and Azim, R (2022) W-shaped slot-loaded U-shaped low SAR patch antenna for microwave-based malignant tissue detection system. Chinese Journal of Physics 77, 233249. doi10.1016/j.cjph.2022.03.003CrossRefGoogle Scholar
Mobashsher, AT and Abbosh, AM (2016) Compact 3-D slot-loaded folded dipole antenna with unidirectional radiation and low impulse distortion for head imaging applications. IEEE Trans. Antennas Propag 64(7), 32453250. doi:10.1109/TAP.2016.2560909CrossRefGoogle Scholar
Sohani, B, Tiberi, G, Ghavami, N, Ghavami, M, Dudley, S and Rahimi, A (2019) Microwave imaging for stroke detection: Validation on head-mimicking phantom. In Proc. Photonics Electromagn Research Symposium-Spring.CrossRefGoogle Scholar
Salleh, A, Yang, CC, Singh, MS and Islam, MT (2019) Development of antipodal Vivaldi antenna for microwave brain stroke imaging system. International Journal of Engineering & Technology 8(3), 162168. doi:10.14419/ijet.v8i3.19933Google Scholar
Talukder, MS, Samsuzzaman, M, Hasan, MM, Islam, MT, Islam, MT and Rahman, MN (2020) Square Enclosed Circle Microstrip Patch Antenna for Microwave Head Imaging. 23rd International Conference on Computer and Information Technology (ICCIT), DHAKA, Bangladesh, 15. doi:10.1109/ICCIT51783.2020.9392651CrossRefGoogle Scholar
Rezaeieh, SA, Zamani, A and Abbosh, A (2015) 3-D wideband antenna for head-imaging system with performance verification in brain tumor detection. IEEE Antennas and Wireless Propagation Letters 14, 910914. doi:10.1109/LAWP.2014.2386852CrossRefGoogle Scholar
Zhao, M Riaz, A, Saied, IM, Shami, Z and Arslan, T (2024) Dual-planar monopole antenna-based remote sensing system for microwave medical applications. Sensors 24(2), 328. doi:10.3390/s24020328CrossRefGoogle ScholarPubMed
Islam, MS, Islam, MT, Hoque, A, Islam, MT, Amin, N and Chowdhury, ME (2021) A portable electromagnetic head imaging system using metamaterial loaded compact directional 3D antenna. IEEE Access 9, 5089350906. doi:10.1109/ACCESS.2021.3069712CrossRefGoogle Scholar
Bin Nesar, MS, Chakma, N, Muktadir, MA and Biswas, A (2018) Design of a Miniaturized Slotted T-Shaped Microstrip Patch Antenna to Detect and Localize Brain Tumor. International Conference on Innovations in Science, Engineering and Technology (ICISET), Chittagong, Bangladesh, 157162. doi:10.1109/ICISET.2018.8745566CrossRefGoogle Scholar
Razzicchia, E (2019) Feasibility study of enhancing microwave brain imaging using metamaterials. Sensors 19, 5472. doi:10.3390/s19245472CrossRefGoogle ScholarPubMed
Singh, T, Singh, S, Singh, M and Kaur, R (2019) Design of Patch Antenna to Detect Brain Tumor. International Conference on Issues and Challenges in Intelligent Computing Techniques (ICICT), Ghaziabad, India, 16. doi:10.1109/ICICT46931.2019.8977631CrossRefGoogle Scholar
Alqadami, ASM, Bialkowski, KS, Mobashsher, AT and Abbosh, AM (2019) Wearable electromagnetic head imaging system using flexible wideband antenna array based on polymer technology for brain stroke diagnosis. IEEE Transactions on Biomedical Circuits and Systems 13(1), 124134. doi:10.1109/TBCAS.2018.2878057CrossRefGoogle ScholarPubMed