Hostname: page-component-5b777bbd6c-sbgtn Total loading time: 0 Render date: 2025-06-19T20:44:16.121Z Has data issue: false hasContentIssue false

Multiscale settling dynamics of Kolmogorov-scale sediment-like particles in turbulence

Published online by Cambridge University Press:  13 June 2025

Nathan Keane
Affiliation:
College of Earth Ocean and Atmospheric Sciences, Oregon State University, Corvallis, OR 97331, USA
Sourabh V. Apte*
Affiliation:
School of Mechanical Industrial and Manufacturing Engineering, Oregon State University, Corvallis, OR 97331, USA
*
Corresponding author: Sourabh V. Apte, sva@oregonstate.edu

Abstract

The settling dynamics of finite size, slightly heavier-than-fluid Kolmogorov-scale particles in homogeneous, isotropic turbulence at moderate volume loadings is investigated. A thoroughly validated two-way-coupled, point-particle model based on the complete Maxey–Riley–Gatignol equation of motion is used with closure models for all forces, including the history force, together with corrections for the self-disturbance field created by the particle using a novel zonal-advection-diffusion-reaction method. Settling dynamics is investigated by varying turbulence intensities relative to the particle settling speed in quiescent flow for multiple Stokes numbers. The length scales associated with the turbulence structures that strongly interact with and influence the settling dynamics are investigated using multiscale statistical analysis of the fluid velocity and second invariant of the velocity gradient tensors sampled by the particles. The time scales are investigated using trajectory curvature angle statistics of inertial and fluid particles. Low-to-moderate Stokes number particles tend to sample strain-rate dominated regions of the flow, tend to follow the curvature of the flow paths and show enhanced settling at higher turbulence intensities due to fast tracking and preferential sampling. Higher Stokes number particles, on the other hand, have a tendency to travel in straight lines relative to the flow and result in reduced settling speeds due to loitering. For the low mass loadings considered in this work, there is minimal global effect on the turbulent flow characteristics; however, it is found that the Kolmogorov-scale particles interact with and locally modify flow structures approximately twice their size, whereas they sample flow velocities from scales up to ten times the particle size, influencing preferential sampling and settling characteristics.

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Akutina, Y., Revil-Baudard, T., Chauchat, J. & Eiff, O. 2020 Experimental evidence of settling retardation in a turbulence column. Phys. Rev. Fluids 5 (1), 014303.10.1103/PhysRevFluids.5.014303CrossRefGoogle Scholar
Apte, S.V. 2022 A Zonal Advection-Diffusion-Reaction Model for Self-Disturbance Correction in Point-Particle Computations. Center for Turbulence Research, Stanford University.Google Scholar
Apte, S.V., Oujia, T., Matsuda, K., Kadoch, B., He, X. & Schneider, K. 2022 Clustering of inertial particles in turbulent flow through a porous unit cell. J. Fluid Mech. 937, A9.10.1017/jfm.2022.100CrossRefGoogle Scholar
Balachandar, S. & Maxey, M.R. 1989 Methods for evaluating fluid velocities in spectral simulations of turbulence. J. Comput. Phys. 83 (1), 96125.10.1016/0021-9991(89)90224-6CrossRefGoogle Scholar
Bassenne, M., Urzay, J., Park, G.I. & Moin, P. 2016 Constant-energetics physical-space forcing methods for improved convergence to homogeneous-isotropic turbulence with application to particle-laden flows. Phys. Fluids 28 (3), 035114.10.1063/1.4944629CrossRefGoogle Scholar
Bec, J., Homann, H. & Ray, S.S. 2014 Gravity-driven enhancement of heavy particle clustering in turbulent flow. Phys. Rev. Lett. 112 (18), 184501.10.1103/PhysRevLett.112.184501CrossRefGoogle ScholarPubMed
Bergkvist, J., Klawonn, I., Whitehouse, M.J., Lavik, G., Brüchert, V. & Ploug, H. 2018 Turbulence simultaneously stimulates small- and large-scale CO2 sequestration by chain-forming diatoms in the sea. Nat. Commun. 9 (1), 3046.10.1038/s41467-018-05149-wCrossRefGoogle ScholarPubMed
Bergougnoux, L., Bouchet, G., Lopez, D. & Guazzelli, É. 2014 The motion of solid spherical particles falling in a cellular flow field at low Stokes number. Phys. Fluids 26 (9), 093302.10.1063/1.4895736CrossRefGoogle Scholar
Bhattacharjee, S., Tom, J., Carbone, M. & Bragg, A.D. 2024 Investigating the parametric dependence of the impact of two-way coupling on inertial particle settling in turbulence. J. Fluid Mech. 987, A17.10.1017/jfm.2024.322CrossRefGoogle Scholar
Bos, W.J. T., Kadoch, B. & Schneider, K. 2015 Angular statistics of lagrangian trajectories in turbulence. Phys. Rev. Lett. 114 (21), 214502.10.1103/PhysRevLett.114.214502CrossRefGoogle ScholarPubMed
Bosse, T., Kleiser, L. & Meiburg, E. 2006 Small particles in homogeneous turbulence: settling velocity enhancement by two-way coupling. Phys. Fluids 18 (2), 027102.10.1063/1.2166456CrossRefGoogle Scholar
Calzavarini, E., Volk, R., Bourgoin, M., Lévêque, E., Pinton, J.-F. & Toschi, F. 2009 Acceleration statistics of finite-sized particles in turbulent flow: the role of Faxén forces. J. Fluid Mech. 630, 179189.10.1017/S0022112009006880CrossRefGoogle Scholar
Casas, G., Ferrer, A. & Oñate, E. 2018 Approximating the Basset force by optimizing the method of van Hinsberg et al. J. Comput. Phys. 352, 142171.10.1016/j.jcp.2017.09.060CrossRefGoogle Scholar
Cuthbertson, A.J. & Ervine, D.A. 2007 Experimental study of fine sand particle settling in turbulent open channel flows over rough porous beds. J. Hydraul. Engng 133 (8), 905916.10.1061/(ASCE)0733-9429(2007)133:8(905)CrossRefGoogle Scholar
Dávila, J. & Hunt, J.C.R. 2001 Settling of small particles near vortices and in turbulence. J. Fluid Mech. 440, 117145.10.1017/S0022112001004694CrossRefGoogle Scholar
Dey, S., Ali, S.Z. & Padhi, E. 2019 Terminal fall velocity: the legacy of Stokes from the perspective of fluvial hydraulics. Proc. R. Soc. Lond. A: Math. Phys. Engng Sci. 475 (2228), 20190277.Google ScholarPubMed
Dey, S., Ali, S.Z. & Padhi, E. 2020 Hydrodynamic lift on sediment particles at entrainment: present status and its prospect. J. Hydraul. Engng 146 (6), 03120001.10.1061/(ASCE)HY.1943-7900.0001751CrossRefGoogle Scholar
Dorgan, A.J. & Loth, E. 2007 Efficient calculation of the history force at finite reynolds numbers. Intl J. Multiphase Flow 33 (8), 833848.10.1016/j.ijmultiphaseflow.2007.02.005CrossRefGoogle Scholar
Eaton, J.K. & Fessler, J.R. 1994 Preferential concentration of particles by turbulence. Intl J. Multiphase Flow 20, 169209.10.1016/0301-9322(94)90072-8CrossRefGoogle Scholar
Esmaily, M. & Horwitz, J.A.K. 2018 A correction scheme for two-way coupled point-particle simulations on anisotropic grids. J. Comput. Phys. 375, 960982.10.1016/j.jcp.2018.09.009CrossRefGoogle Scholar
Evrard, F., Chandran, A., Cortez, R. & van Wachem, B. 2025 Undisturbed velocity recovery with transient and weak inertia effects in volume-filtered simulations of particle-laden flows. J. Comput. Phys. 523, 113684.10.1016/j.jcp.2024.113684CrossRefGoogle Scholar
Farge, M. & Schneider, K. 2015 Wavelet transforms and their applications to MHD and plasma turbulence: a review. J. Plasma Phys. 81 (6), 435810602.10.1017/S0022377815001075CrossRefGoogle Scholar
Finn, J.R., Li, M. & Apte, S.V. 2016 Particle based modelling and simulation of natural sand dynamics in the wave bottom boundary layer. J. Fluid Mech. 796, 340385.10.1017/jfm.2016.246CrossRefGoogle Scholar
Fornari, W., Picano, F., Sardina, G. & Brandt, L. 2016 Reduced particle settling speed in turbulence. J. Fluid Mech. 808, 153167.10.1017/jfm.2016.648CrossRefGoogle Scholar
Foster, D.L., Beach, R.A. & Holman, R.A. 2006 Turbulence observations of the nearshore wave bottom boundary layer. J. Geophys. Res. 111 (C4), C04011.Google Scholar
Ganguli, S. & Lele, S.K. 2019 Drag of a heated sphere at low reynolds numbers in the absence of buoyancy. J. Fluid Mech. 869, 264291.10.1017/jfm.2019.187CrossRefGoogle Scholar
Gatignol, R. 1983 The faxén formulae for a rigid particle in an unsteady non-uniform stokes flow. Journal de Mecanique Theorique et Appliquee 2 (2), 143160.Google Scholar
Good, G.H., Ireland, P.J., Bewley, G.P., Bodenschatz, E., Collins, L.R. & Warhaft, Z. 2014 Settling regimes of inertial particles in isotropic turbulence. J. Fluid Mech. 759, R3.10.1017/jfm.2014.602CrossRefGoogle Scholar
Goto, S., Saito, Y. & Kawahara, G. 2017 Hierarchy of antiparallel vortex tubes in spatially periodic turbulence at high Reynolds numbers. Phys. Rev. Fluids 2 (6), 064603.10.1103/PhysRevFluids.2.064603CrossRefGoogle Scholar
Hagan, D., Wengrove, M., Dubief, Y., Desjardins, O., Frank-Gilchrist, D. & Calantoni, J. 2023 Particle based large eddy simulation of vortex ripple dynamics using an Euler–Lagrange approach. Eur. J. Mech. B/Fluids 97, 5369.10.1016/j.euromechflu.2022.09.003CrossRefGoogle Scholar
Horwitz, J.A.K. & Mani, A. 2020 Two-way coupled particle-turbulence interaction: effect of numerics and resolution on fluid and particle statistics. Phys. Rev. Fluids 5 (10), 104302.10.1103/PhysRevFluids.5.104302CrossRefGoogle Scholar
Ireland, P.J., Bragg, A.D. & Collins, L.R. 2016 The effect of Reynolds number on inertial particle dynamics in isotropic turbulence. Part 1. Simulations without gravitational effects. J. Fluid Mech. 796, 617658.10.1017/jfm.2016.238CrossRefGoogle Scholar
Ireland, P.J. & Desjardins, O. 2017 Improving particle drag predictions in Euler–Lagrange simulations with two-way coupling. J. Comput. Phys. 338, 405430.10.1016/j.jcp.2017.02.070CrossRefGoogle Scholar
Jacobs, C.N., Merchant, W., Jendrassak, M., Limpasuvan, V., Gurka, R. & Hackett, E.E. 2016 Flow scales of influence on the settling velocities of particles with varying characteristics. PLOS ONE 11 (8), e0159645.10.1371/journal.pone.0159645CrossRefGoogle ScholarPubMed
Jaganathan, D., Prasath, S.G., Govindarajan, R. & Vasan, V. 2023 The Basset–Boussinesq history force: its neglect, validity, and recent numerical developments. Front. Phys. 11, 1167338.10.3389/fphy.2023.1167338CrossRefGoogle Scholar
Jaroslawski, T., Jaganathan, D., Govindarajan, R. & McKeon, B. 2024 Basset–Boussinesq history force and inertia are relevant for unsteady particle settling dynamics. arXiv:2408.12530.Google Scholar
Johnson, P.L. & Wilczek, M. 2024 Multiscale velocity gradients in turbulence. Annu. Rev. Fluid Mech. 56 (1), 463490.10.1146/annurev-fluid-121021-031431CrossRefGoogle Scholar
Kadoch, B., Bassenne, M., Esmaily-Moghadam, M., Schneider, K., Farge, M. & Bose, W.J.T. 2016 Multi-Scale Geometrical Lagrangian Statistics: Extensions and Applications to Particle-Laden Turbulent Flows. Center for Turbulence Research, Stanford University.Google Scholar
Kawanisi, K. & Shiozaki, R. 2008 Turbulent effects on the settling velocity of suspended sediment. J. Hydraul. Engng 134 (2), 261266.10.1061/(ASCE)0733-9429(2008)134:2(261)CrossRefGoogle Scholar
Keane, N.A., Apte, S.V., Jain, S.S. & Khanwale, M.A. 2023 Effect of interpolation kernels and grid refinement on two way-coupled point-particle simulations. Intl J. Multiphase Flow 166, 104517.10.1016/j.ijmultiphaseflow.2023.104517CrossRefGoogle Scholar
Kim, J. & Balachandar, S. 2024 Finite volume fraction effect on self-induced velocity in two-way coupled Euler–Lagrange simulations. Phys. Rev. Fluids 9 (3), 034306.10.1103/PhysRevFluids.9.034306CrossRefGoogle Scholar
Kuerten, J.G.M. 2016 Point-particle DNS and LES of particle-laden turbulent flow − a state-of-the-art review. Flow Turbul. Combust. 97 (3), 689713.10.1007/s10494-016-9765-yCrossRefGoogle Scholar
Li, S., Bragg, A.D. & Katul, G. 2023 Reduced sediment settling in turbulent flows due to Basset history and virtual mass effects. Geophys. Res. Lett. 50 (22), e2023GL105810.10.1029/2023GL105810CrossRefGoogle Scholar
Ling, Y., Parmar, M. & Balachandar, S. 2013 A scaling analysis of added-mass and history forces and their coupling in dispersed multiphase flows. Intl J. Multiphase Flow 57, 102114.10.1016/j.ijmultiphaseflow.2013.07.005CrossRefGoogle Scholar
Mallat, S. 2009 A wavelet tour of signal processing. In The Sparse Way. 3rd edn Academic Press.Google Scholar
Maxey, M.R. 1987 The gravitational settling of aerosol particles in homogeneous turbulence and random flow fields. J. Fluid Mech. 174, 441465.10.1017/S0022112087000193CrossRefGoogle Scholar
Maxey, M.R. & Riley, J.J. 1983 Equation of motion for a small rigid sphere in a nonuniform flow. Phys. Fluids 26 (4), 883889.10.1063/1.864230CrossRefGoogle Scholar
Mehrabadi, M., Horwitz, J.A.K., Subramaniam, S. & Mani, A. 2018 A direct comparison of particle-resolved and point-particle methods in decaying turbulence. J. Fluid Mech. 850, 336369.10.1017/jfm.2018.442CrossRefGoogle Scholar
Monchaux, R. & Dejoan, A. 2017 Settling velocity and preferential concentration of heavy particles under two-way coupling effects in homogeneous turbulence. Phys. Rev. Fluids 2 (10), 104302.10.1103/PhysRevFluids.2.104302CrossRefGoogle Scholar
Moreno-Casas, P.A. & Bombardelli, F.A. 2016 Computation of the Basset force: recent advances and environmental flow applications. Environ. Fluid Mech. 16 (1), 193208.10.1007/s10652-015-9424-1CrossRefGoogle Scholar
Murray, S.P. 1970 Settling velocities and vertical diffusion of particles in turbulent water. J. Geophys. Res. 75 (9), 16471654.10.1029/JC075i009p01647CrossRefGoogle Scholar
Nemes, A., Dasari, T., Hong, J., Guala, M. & Coletti, F. 2017 Snowflakes in the atmospheric surface layer: observation of particle–turbulence dynamics. J. Fluid Mech. 814, 592613.10.1017/jfm.2017.13CrossRefGoogle Scholar
Nielsen, P. 1993 Turbulence effects on the settling of suspended particles. SEPM J. Sediment. Res. 63, 835838.Google Scholar
Nielsen, P. 2007 Mean and variance of the velocity of solid particles in turbulence. In Particle-Laden Flow: From Geophysical to Kolmogorov Scales, pp. 385391. Springer.10.1007/978-1-4020-6218-6_30CrossRefGoogle Scholar
Olivieri, S., Picano, F., Sardina, G., Iudicone, D. & Brandt, L. 2014 The effect of the Basset history force on particle clustering in homogeneous and isotropic turbulence. Phys. Fluids 26 (4), 041704.10.1063/1.4871480CrossRefGoogle Scholar
Pakseresht, P. & Apte, S.V. 2021 A disturbance corrected point-particle approach for two-way coupled particle-laden flows on arbitrary shaped grids. J. Comput. Phys. 439, 110381.10.1016/j.jcp.2021.110381CrossRefGoogle Scholar
Pakseresht, P., Esmaily, M. & Apte, S.V. 2020 A correction scheme for wall-bounded two-way coupled point-particle simulations. J. Comput. Phys. 420, 109711.10.1016/j.jcp.2020.109711CrossRefGoogle Scholar
Parmar, M., Annamalai, S., Balachandar, S. & Prosperetti, A. 2018 Differential formulation of the viscous history force on a particle for efficient and accurate computation. J. Fluid Mech. 844, 970993.10.1017/jfm.2018.217CrossRefGoogle Scholar
Petersen, A.J., Baker, L. & Coletti, F. 2019 Experimental study of inertial particles clustering and settling in homogeneous turbulence. J. Fluid Mech. 864, 925970.10.1017/jfm.2019.31CrossRefGoogle Scholar
Pope, S.B. 2000 Turbulent Flows. 1st edn. Cambridge University Press.Google Scholar
Richardson, J.F. & Zaki, W.N. 1954 The sedimentation of a suspension of uniform spheres under conditions of viscous flow. Chem. Engng Sci. 3 (2), 6573.10.1016/0009-2509(54)85015-9CrossRefGoogle Scholar
Rosa, B., Kopeć, S., Ababaei, A. & Pozorski, J. 2022 Collision statistics and settling velocity of inertial particles in homogeneous turbulence from high-resolution DNS under two-way momentum coupling. Intl J. Multiphase Flow 148, 103906.10.1016/j.ijmultiphaseflow.2021.103906CrossRefGoogle Scholar
Rosa, B., Parishani, H., Ayala, O. & Wang, L.-P. 2016 Settling velocity of small inertial particles in homogeneous isotropic turbulence from high-resolution DNS. Intl J. Multiphase Flow 83, 217231.10.1016/j.ijmultiphaseflow.2016.04.005CrossRefGoogle Scholar
Rosa, B., Pozorski, J. & Wang, L.-P. 2020 Effects of turbulence modulation and gravity on particle collision statistics. Intl J. Multiphase Flow 129, 103334.10.1016/j.ijmultiphaseflow.2020.103334CrossRefGoogle Scholar
Saffman, P.G. 1965 The lift on a small sphere in a slow shear flow. J. Fluid Mech. 22 (2), 385400.10.1017/S0022112065000824CrossRefGoogle Scholar
Schneider, K. & Vasilyev, O.V. 2010 Wavelet methods in computational fluid dynamics. Annu. Rev. Fluid Mech. 42 (1), 473503.10.1146/annurev-fluid-121108-145637CrossRefGoogle Scholar
Schneiders, L., Meinke, M. & Schröder, W. 2017 Direct particle–fluid simulation of Kolmogorov-length-scale size particles in decaying isotropic turbulence. J. Fluid Mech. 819, 188227.10.1017/jfm.2017.171CrossRefGoogle Scholar
Tom, J. & Bragg, A.D. 2019 Multiscale preferential sweeping of particles settling in turbulence. J. Fluid Mech. 871, 244270.10.1017/jfm.2019.337CrossRefGoogle Scholar
Tom, J., Carbone, M. & Bragg, A.D. 2022 How does two-way coupling modify particle settling and the role of multiscale preferential sweeping? J. Fluid Mech. 947, A7.10.1017/jfm.2022.615CrossRefGoogle Scholar
van Hinsberg, M.A.T., ten Thije Boonkkamp, J.H.M. & Clercx, H.J.H. 2011 An efficient, second order method for the approximation of the Basset history force. J. Comput. Phys. 230 (4), 14651478.10.1016/j.jcp.2010.11.014CrossRefGoogle Scholar
van Hinsberg, M.A.T., Clercx, H.J.H. & Toschi, F. 2017 Enhanced settling of nonheavy inertial particles in homogeneous isotropic turbulence: the role of the pressure gradient and the Basset history force. Phys. Rev. E 95 (2), 023106.10.1103/PhysRevE.95.023106CrossRefGoogle ScholarPubMed
Vowinckel, B. 2021 Incorporating grain-scale processes in macroscopic sediment transport models: a review and perspectives for environmental and geophysical applications. Acta Mechanica 232 (6), 20232050.10.1007/s00707-021-02951-4CrossRefGoogle Scholar
Wang, L.-P. & Maxey, M.R. 1993 Settling velocity and concentration distribution of heavy particles in homogeneous isotropic turbulence. J. Fluid Mech. 256, 2768.10.1017/S0022112093002708CrossRefGoogle Scholar
Yang, T.S. & Shy, S.S. 2003 The settling velocity of heavy particles in an aqueous near-isotropic turbulence. Phys. Fluids 15 (4), 868880.10.1063/1.1557526CrossRefGoogle Scholar
Yeung, P.K. & Pope, S.B. 1988 An algorithm for tracking fluid particles in numerical simulations of homogeneous turbulence. J. Comput. Phys. 79 (2), 373416.10.1016/0021-9991(88)90022-8CrossRefGoogle Scholar