Hostname: page-component-5b777bbd6c-gtgcz Total loading time: 0 Render date: 2025-06-19T07:50:36.831Z Has data issue: false hasContentIssue false

On the local resonance between surface gravity waves and submerged resonators in a numerical wave tank

Published online by Cambridge University Press:  16 June 2025

Francesco De Vita*
Affiliation:
Dipartimento di Meccanica Matematica e Management, Politecnico di Bari, Via Orabona 4 Bari, 70125, Italy
Marco Donato de Tullio
Affiliation:
Dipartimento di Meccanica Matematica e Management, Politecnico di Bari, Via Orabona 4 Bari, 70125, Italy
Miguel Onorato
Affiliation:
Dipartimento di Fisica, Universitá di Torino, Via P Giuria 1, Torino 10125, Italy INFN, Sezione di Torino, Via P Giuria 1, Torino 10125, Italy
*
Corresponding author: Francesco De Vita, fnc.devita@gmail.com

Abstract

Waves propagating over oscillating periodic structures can be reflected and attenuated either by Bragg scattering or by local resonance. In this work, we focus on the interplay between surface gravity waves and submerged resonators, investigating the effect of the local resonance on wave propagation. The study is performed using a state of the art numerical simulation of the Navier–Stokes equation in two-dimensional form with free boundary and moving bodies. A volume of fluid interface technique is employed for tracking the free surface, and an immersed boundary method for the fluid–structure interaction. A wave maker is placed at one end of the flume and an absorbing beach at the other. The evolution in space of a monochromatic wave interacting with up to four resonators coupled only fluid mechanically is presented. We evaluate the efficiency of the system in terms of wave amplitude attenuation and energy transfers between the fluid and the solid phase. The results indicate that, near resonance conditions, both wave reflection and energy dissipation increase significantly. Conversely, far from resonance, waves can propagate through the system with minimal dissipation, even in the presence of numerous resonators. Moreover, when the time scale associated with the resonator’s restoring force is longer than the wave period, the resonators tend to follow the wave motion, oscillating with an amplitude comparable to that of the wave. In contrast, when the two time scales are similar, the resonator motion becomes amplified, resulting in stronger velocity gradients and enhanced viscous dissipation.

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Abbasnia, A. & Soares, C.G. 2018 Fully nonlinear simulation of wave interaction with a cylindrical wave energy converter in a numerical wave tank. Ocean Engng 152, 210222.10.1016/j.oceaneng.2018.01.009CrossRefGoogle Scholar
Anbarsooz, M., Passandideh-Fard, M. & Moghiman, M. 2014 Numerical simulation of a submerged cylindrical wave energy converter. Renew. Energy 64, 132143.10.1016/j.renene.2013.11.008CrossRefGoogle Scholar
Anglart, A., Maurel, A., Petitjeans, P., Pagneux, V. 2024 Regular sloshing modes in irregular cavities using metabathymetry. Appl. Phys. Lett. 125 (21), 211706.10.1063/5.0223974CrossRefGoogle Scholar
Chen, Q., Kelly, D.M. & Zang, J. 2019 On the relaxation approach for wave absorption in numerical wave tanks. Ocean Engng 187, 106210.10.1016/j.oceaneng.2019.106210CrossRefGoogle Scholar
Davies, A.G. & Heathershaw, A.D. 1984 Surface-wave propagation over sinusoidally varying topography. J. Fluid Mech. 144, 419443.10.1017/S0022112084001671CrossRefGoogle Scholar
De Vita, F., De Lillo, F., Bosia, F. & Onorato, M. 2021 a Attenuating surface gravity waves with mechanical metamaterials. Phys. Fluids 33 (4), 047113.10.1063/5.0048613CrossRefGoogle Scholar
De Vita, F., De Lillo, F., Verzicco, R. & Onorato, M. 2021 b A fully eulerian solver for the simulation of multiphase flows with solid bodies: application to surface gravity waves J. Comput. Phys. 438, 110355.10.1016/j.jcp.2021.110355CrossRefGoogle Scholar
De Vita, F., Di Mascio, A. & Onorato, M. 2022 A Navier–Stokes numerical wave tank with a pressure-based relaxation zone method. Ocean Engng 266, 113207.10.1016/j.oceaneng.2022.113207CrossRefGoogle Scholar
Dean, R.G. & Dalrymple, R.A. 1991 Water wave mechanics for engineers and scientists. vol. 2, World scientific publishing company.10.1142/1232CrossRefGoogle Scholar
Euvé, L.-P. 2023 Perfect resonant absorption of guided water waves by autler-townes splitting. Phys. Rev. Lett. 131 (20), 204002.10.1103/PhysRevLett.131.204002CrossRefGoogle ScholarPubMed
Euvé, L.-P., Pham, K., Petitjeans, P., Pagneux, V. & Maurel, A. 2024 Experimental demonstration of negative refraction of water waves using metamaterials with hyperbolic dispersion. Phys. Rev. Fluids 9 (11), L112801.10.1103/PhysRevFluids.9.L112801CrossRefGoogle Scholar
Euvé, L.-P., Pham, K., Petitjeans, P., Pagneux, V. & Maurel, A. 2024 a Experimental demonstration of negative refraction of water waves using metamaterials with hyperbolic dispersion. Phys. Rev. Fluids 9 (11), L112801.10.1103/PhysRevFluids.9.L112801CrossRefGoogle Scholar
Euvé, L.-P., Pham, K., Petitjeans, P., Pagneux, V. & Maurel, A. 2024 b Perfect active absorption of water waves in a channel by a dipole source. J. Fluid Mech. 990, A9.10.1017/jfm.2024.496CrossRefGoogle Scholar
Evans, D.V. 1976 A theory for wave-power absorption by oscillating bodies. J. Fluid Mech. 77 (1), 125.10.1017/S0022112076001109CrossRefGoogle Scholar
Evans, D.V. & Linton, C.M. 1989 Active devices for the reduction of wave intensity, Appl. Ocean Res. 11 (1), 2632.10.1016/0141-1187(89)90004-7CrossRefGoogle Scholar
Fadlun, E.A., Verzicco, R., Orlandi, P. & Mohd-Yusof, J. 2000 Combined immersed-boundary finite-difference methods for three-dimensional complex flow simulations. J. Comput. Phys. 161 (1), 3560.10.1006/jcph.2000.6484CrossRefGoogle Scholar
Han, L., Duan, Q., Duan, J., Zhu, S., Chen, S., Yin, Y. & Chen, H. 2024 Unidirectional propagation of water waves near ancient Luoyang Bridge. Front. Phys. 19, 32206.10.1007/s11467-024-1411-xCrossRefGoogle Scholar
Hara, T. & Mei, C.C. 1987 Bragg scattering of surface waves by periodic bars: theory and experiment. J. Fluid Mech. 178, 221241.10.1017/S0022112087001198CrossRefGoogle Scholar
Heikkinen, H., Lampinen, M.J. & Böling, J. 2013 Analytical study of the interaction between waves and cylindrical wave energy converters oscillating in two modes. Renew. Energy 50, 150160.10.1016/j.renene.2012.06.023CrossRefGoogle Scholar
Hu, X., Chan, C.T., Ho, K.-M. & Zi, J. 2011 Negative effective gravity in water waves by periodic resonator arrays. Phys. Rev. Lett. 106 (17), 174501.10.1103/PhysRevLett.106.174501CrossRefGoogle ScholarPubMed
Hu, X., Shen, Y., Liu, X., Fu, R. & Zi, J. 2003 Complete band gaps for liquid surface waves propagating over a periodically drilled bottom. Phys. Rev. E 68 (6), 066308.10.1103/PhysRevE.68.066308CrossRefGoogle Scholar
Huang, Y., Dai, S., Yuan, Z.-M. & Jia, L. 2024 Rapid validation of water wave metamaterials in a desktop-scale wave measurement system. Intl J. Fluid Eng. 1 (1), 013501.10.1063/5.0191033CrossRefGoogle Scholar
Hussein, M.I., Leamy, M.J. & Ruzzene, M. 2014 Dynamics of phononic materials and structures: historical origins, recent progress, and future outlook. Appl. Mech. Rev. 66 (4), 040802.10.1115/1.4026911CrossRefGoogle Scholar
Ii, S., Sugiyama, K., Takeuchi, S., Takagi, S., Matsumoto, Y. & Xiao, F. 2012 An interface capturing method with a continuous function: the THINC method with multi-dimensional reconstruction. J. Comput. Phys. 231 (5), 23282358.10.1016/j.jcp.2011.11.038CrossRefGoogle Scholar
Jin, S., Patton, R.J. & Guo, B. 2018 Viscosity effect on a point absorber wave energy converter hydrodynamics validated by simulation and experiment. Renew. Energy 129, 500512.10.1016/j.renene.2018.06.006CrossRefGoogle Scholar
Koukouraki, M., Petitjeans, P., Maurel, A. & Pagneux, V. 2025 Floquet scattering of shallow water waves by a vertically oscillating plate. Wave Motion 136, 103530.10.1016/j.wavemoti.2025.103530CrossRefGoogle Scholar
Kucher, S., Koźluk, A., Petitjeans, P., Maurel, A. & Pagneux, V. 2023 Backscattering reduction in a sharply bent water wave channel. Phys. Rev. B 108 (21), 214311.10.1103/PhysRevB.108.214311CrossRefGoogle Scholar
Han, L., Chen, S. & Chen, H. 2022 Metamaterials Control the Shape of Water Waves. APS Physics.Google Scholar
Li, Y. & Yu, Y.-H. 2012 A synthesis of numerical methods for modeling wave energy converter-point absorbers. Renew. Sustain. Energy Rev. 16 (6), 43524364.10.1016/j.rser.2011.11.008CrossRefGoogle Scholar
Lorenzo, M., Pezzutto, P., De Lillo, F., Ventrella, F.M., De Vita, F., Bosia, F. & Onorato, M. 2023 Attenuating surface gravity waves with an array of submerged resonators: an experimental study. J. Fluid Mech. 973, A16.10.1017/jfm.2023.741CrossRefGoogle Scholar
Pendry, J. 2001 Electromagnetic materials enter the negative age. Phys. World 14 (9), 4751.10.1088/2058-7058/14/9/32CrossRefGoogle Scholar
Rosti, M.E., De Vita, F. & Brandt, L. 2018 Numerical simulations of emulsions in shear flows. Acta Mech. 230, 667682.10.1007/s00707-018-2265-5CrossRefGoogle Scholar
de Tullio, M.D. & Pascazio, G. 2016 A moving-least-squares immersed boundary method for simulating the fluid–structure interaction of elastic bodies with arbitrary thickness. J. Comput. Phys. 325, 201225.10.1016/j.jcp.2016.08.020CrossRefGoogle Scholar
Xu, Q., Li, Y., Xia, Y., Chen, W. & Gao, F. 2019 Performance assessments of the fully submerged sphere and cylinder point absorber wave energy converters. Mod. Phys. Lett. B 33 (13), 1950168.10.1142/S0217984919501689CrossRefGoogle Scholar
Zurkinden, A.S., Ferri, F., Beatty, S., Kofoed, J.P. & Kramer, M.M. 2014 Non-linear numerical modeling and experimental testing of a point absorber wave energy converter. Ocean Engng 78, 1121.10.1016/j.oceaneng.2013.12.009CrossRefGoogle Scholar
Supplementary material: File

De Vita et al. supplementary material movie 1

Surface evolution and resonator motion for the case with four resonators and frequency ratio Λ = 0.34.
Download De Vita et al. supplementary material movie 1(File)
File 5.3 MB
Supplementary material: File

De Vita et al. supplementary material movie 2

Surface evolution and resonator motion for the case with four resonators and frequency ratio Λ = 1.02.
Download De Vita et al. supplementary material movie 2(File)
File 5.1 MB