Hostname: page-component-5b777bbd6c-gtgcz Total loading time: 0 Render date: 2025-06-20T11:15:27.819Z Has data issue: false hasContentIssue false

Small-scale anisotropy and ramp–cliff structures in turbulent shear flows

Published online by Cambridge University Press:  28 April 2025

Xuechun Gong
Affiliation:
Center for Combustion Energy and School of Aerospace Engineering, Tsinghua University, Beijing 100084, PR China
Ping-Fan Yang*
Affiliation:
School of Aeronautics and Institute of Extreme Mechanics, Northwestern Polytechnical University, Xi’an 710072, PR China National Key Laboratory of Aircraft Configuration Design, Xi’an 710072, PR China
Haitao Xu
Affiliation:
Center for Combustion Energy and School of Aerospace Engineering, Tsinghua University, Beijing 100084, PR China
Alain Pumir
Affiliation:
CNRS and Ecole Normale Supérieure de Lyon, Laboratoire de Physique, F-69342 Lyon, France
*
Corresponding author: Ping-Fan Yang, yangpingfan@nwpu.edu.cn

Abstract

Experimental and numerical observations in turbulent shear flows point to the persistence of the anisotropy imprinted by the large-scale velocity gradient down to the smallest scales of turbulence. This is reminiscent of the strong anisotropy induced by a mean passive scalar gradient, which manifests itself by the ‘ramp–cliff’ structures. In the shear flow problem, the anisotropy can be characterised by the odd-order moments of $\partial _y u$, where $u$ is the fluctuating streamwise velocity component, and $y$ is the direction of mean shear. Here, we extend the approach proposed by Buaria et al. (Phys. Rev. Lett., 126, 034504, 2021) for the passive scalar fields, and postulate that fronts of width $\delta \sim \eta Re_\lambda ^{1/4}$, where $\eta$ is the Kolmogorov length scale, and $Re_\lambda$ is the Taylor-based Reynolds number, explain the observed small-scale anisotropy for shear flows. This model is supported by the collapse of the positive tails of the probability density functions (PDFs) of $(\partial _y u)/(u^{\prime }/\delta )$ in turbulent homogeneous shear flows (THSF) when the PDFs are normalised by $\delta /L$, where $u^{\prime }$ is the root-mean-square of $u$ and $L$ is the integral length scale. The predictions of this model for the odd-order moments of $\partial _y u$ in THSF agree well with direct numerical simulation (DNS) and experimental results. Moreover, the extension of our analysis to the log-layer of turbulent channel flows (TCF) leads to the prediction that the odd-order moments of order $p (p \gt 1)$ of $\partial _y u$ have power-law dependencies on the wall distance $y^{+}$: $\langle (\partial _y u)^p \rangle /\langle (\partial _y u)^2 \rangle ^{p/2} \sim (y^{+})^{(p-5)/8}$, which is consistent with DNS results.

Type
JFM Rapids
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Buaria, D., Clay, M.P., Sreenivasan, K.R. & Yeung, P.K. 2021 Small-scale isotropy and ramp-cliff structures in scalar turbulence. Phys. Rev. Lett. 126 (3), 034504.CrossRefGoogle ScholarPubMed
Casciola, C.M., Gualtieri, P., Benzi, R. & Piva, R. 2003 Scale-by-scale budget and similarity laws for shear turbulence. J. Fluid Mech. 476, 105114.CrossRefGoogle Scholar
Corrsin, S. 1958 Local isotropy in turbulent shear flow. NACA Tech. Rep. RM 58B11.Google Scholar
Dong, S., Lozano-Durán, A., Sekimoto, A. & Jiménez, J. 2017 Coherent structures in statistically stationary homogeneous shear turbulence. J. Fluid Mech. 816, 167208.CrossRefGoogle Scholar
Ferchichi, M. & Tavoularis, S. 2000 Reynolds number effects on the fine structure of uniformly sheared turbulence. Phys. Fluids 12 (11), 29422953.CrossRefGoogle Scholar
Garg, S. & Warhaft, Z. 1998 On the small scale structure of simple shear flow. Phys. Fluids 10 (3), 662673.CrossRefGoogle Scholar
Gibson, C.H., Friehe, C.A. & McConnell, S.O. 1977 Structure of sheared turbulent fields. Phys. Fluids 20 (10), S156S167.CrossRefGoogle Scholar
Graham, J., et al. 2016 A web services accessible database of turbulent channel flow and its use for testing a new integral wall model for LES. J. Turbul. 17 (2), 181215.CrossRefGoogle Scholar
Holzer, M. & Siggia, E.D. 1994 Turbulent mixing of a passive scalar. Phys. Fluids 6 (5), 18201837.CrossRefGoogle Scholar
Kolmogorov, A.N. 1941 The local structure of turbulence in incompressible viscous fluid for very large Reynolds number. Dokl. Akad. Nauk SSSR 30, 301305.Google Scholar
Lee, M. & Moser, R.D. 2015 Direct numerical simulation of turbulent channel flow up to $\textit {Re}_{{\tau }}\approx 5200$ . J. Fluid Mech. 774, 395415.CrossRefGoogle Scholar
Li, X.X., Hu, R.F. & Fang, L. 2024 Scaling laws of velocity gradient moments of attached eddies. Phys. Rev. Fluids 9 (9), 094602.CrossRefGoogle Scholar
Lumley, J.L. 1967 Similarity and the turbulent energy spectrum. Phys. Fluids 10 (4), 855858.CrossRefGoogle Scholar
Meinhart, C.D. & Adrian, R.J. 1995 On the existence of uniform momentum zones in a turbulent boundary layer. Phys. Fluids 7 (4), 694696.CrossRefGoogle Scholar
Mestayer, P. 1982 Local isotropy and anisotropy in a high-Reynolds-number turbulent boundary layer. J. Fluid Mech. 125, 475503.CrossRefGoogle Scholar
Mestayer, P.G., Gibson, C.H., Coantic, M.F. & Patel, A.S. 1976 Local anisotropy in heated and cooled turbulent boundary layers. Phys. Fluids 19 (9), 12791287.CrossRefGoogle Scholar
Peng, S.H., Zhang, Y.B. & Xi, H.D. 2023 Effects of polymer additives on the entrainment of turbulent water jet. Phys. Fluids 35 (4), 045110.Google Scholar
Pope, S.B. 2000 Turbulent Flows. Cambridge University Press.Google Scholar
Pumir, A. 1994 A numerical study of the mixing of a passive scalar in three dimensions in the presence of a mean gradient. Phys. Fluids 6 (6), 21182132.CrossRefGoogle Scholar
Pumir, A. 1996 Turbulence in homogeneous shear flows. Phys. Fluids 8 (11), 31123127.CrossRefGoogle Scholar
Pumir, A. 2017 Structure of the velocity gradient tensor in turbulent shear flows. Phys. Rev. Fluids 2 (7), 074602.CrossRefGoogle Scholar
Pumir, A. & Shraiman, B.I. 1995 Persistent small scale anisotropy in homogeneous shear flows. Phys. Rev. Lett. 75 (17), 31143117.CrossRefGoogle ScholarPubMed
Pumir, A., Xu, H. & Siggia, E.D. 2016 Small-scale anisotropy in turbulent boundary layers. J. Fluid Mech. 804, 523.CrossRefGoogle Scholar
Rogallo, R.S. 1981 Numerical experiments in homogeneous turbulence. NASA Tech. Rep. 81315.Google Scholar
Rogers, M.M. 1986 The Structure and Modeling of the Hydrodynamic and Passive Scalar Fields in Homogeneous Turbulent Shear Flow. Stanford University.Google Scholar
Sekimoto, A., Dong, S. & Jiménez, J. 2016 Direct numerical simulation of statistically stationary and homogeneous shear turbulence and its relation to other shear flows. Phys. Fluids 28 (3), 035101.CrossRefGoogle Scholar
Shen, X. & Warhaft, Z. 2000 The anisotropy of the small scale structure in high Reynolds number ( ${R}_{\lambda } \sim$ 1000) turbulent shear flow. Phys. Fluids 12, 29762989.CrossRefGoogle Scholar
Shraiman, B.I. & Siggia, E.D. 2000 Scalar turbulence. Nature 405 (6787), 639646.CrossRefGoogle ScholarPubMed
Smits, A.J., McKeon, B.J. & Marusic, I. 2011 High-Reynolds number wall turbulence. Annu. Rev. Fluid Mech. 43 (1), 353375.CrossRefGoogle Scholar
Sreenivasan, K.R. 2019 Turbulent mixing: a perspective. Proc. Natl Acad. Sci. USA 116 (37), 1817518183.CrossRefGoogle ScholarPubMed
Sreenivasan, K.R., Antonia, R.A. & Britz, D. 1979 Local isotropy and large structures in a heated turbulent jet. J. Fluid Mech. 94 (4), 745775.CrossRefGoogle Scholar
Tavoularis, S. & Corrsin, S. 1981 Experiments in nearly homogeneous turbulent shear flow with a uniform mean temperature gradient. Part 2. The fine structure. J. Fluid Mech. 104, 349367.CrossRefGoogle Scholar
Tong, C. & Warhaft, Z. 1994 On passive scalar derivative statistics in grid turbulence. Phys. Fluids 6 (6), 21652176.CrossRefGoogle Scholar
Vreman, A.W. & Kuerten, J.G.M. 2014 Statistics of spatial derivatives of velocity and pressure in turbulent channel flow. Phys. Fluids 26 (8), 085103.CrossRefGoogle Scholar
Warhaft, Z. 2000 Passive scalars in turbulent flows. Annu. Rev. Fluid Mech. 32 (1), 203240.CrossRefGoogle Scholar
Warhaft, Z. & Shen, X. 2001 Some comments on the small scale structure of turbulence at high Reynolds number. Phys. Fluids 13 (5), 15321533.CrossRefGoogle Scholar
Yang, P.F., Pumir, A. & Xu, H. 2021 Return to isotropy of homogeneous shear-released turbulence. Phys. Rev. Fluids 6 (4), 044601.CrossRefGoogle Scholar