No CrossRef data available.
Published online by Cambridge University Press: 26 April 2006
We present experimental results for the wake structure of spheres moving in homogeneous and stratified fluid. In homogeneous fluid, the results of Kim & Durbin (1988) are confirmed and it is shown that the two characteristic frequencies of the wake correspond to two instability modes, the Kelvin–Helmholtz instability and a spiral instability. For the stratified wake four general regimes have been identified, depending principally on the Froude number F. For F > 4.5 the near wake is similar to the homogeneous case, and for F < 0.8 it corresponds to a triple-layer flow with two lee waves, of amplitude linear in F, surrounding a layer dominated by quasi-two-dimensional motion. Froude numbers close to one (F∈]0.8, 1.5[) give rise to a saturated lee wave of amplitude equal to half the sphere radius, which suppresses the separation region or splits it into two. Between F = 1.5 and 4.5 a more complex regime exists where the wake recovers progressively its behaviour in homogeneous fluid: the axisymmetry of the recirculating zone, the Kelvin–Helmholtz instability and, finally, the spiral instability.