Hostname: page-component-5b777bbd6c-7sgmh Total loading time: 0 Render date: 2025-06-19T08:08:23.773Z Has data issue: false hasContentIssue false

Dynamics of cavitation bubbles near a gas-entrapping rigid surface

Published online by Cambridge University Press:  18 June 2025

Yurong Sun
Affiliation:
College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, PR China Faculty of Natural Sciences, Institute for Physics, Department Soft Matter, Otto-von-Guericke University Magdeburg, Magdeburg 39106, Germany
Zhifeng Yao*
Affiliation:
College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, PR China State Key Laboratory of Efficient Utilization of Agricultural Water Resources, China Agricultural University, Beijing, 100083, PR China Beijing Engineering Research Center of Safety and Energy Saving Technology for Water Supply Network System, Beijing 100083, PR China
Chaoyue Wang
Affiliation:
College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, PR China State Key Laboratory of Efficient Utilization of Agricultural Water Resources, China Agricultural University, Beijing, 100083, PR China Beijing Engineering Research Center of Safety and Energy Saving Technology for Water Supply Network System, Beijing 100083, PR China
Qiang Zhong
Affiliation:
College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, PR China State Key Laboratory of Efficient Utilization of Agricultural Water Resources, China Agricultural University, Beijing, 100083, PR China Beijing Engineering Research Center of Safety and Energy Saving Technology for Water Supply Network System, Beijing 100083, PR China
Ruofu Xiao
Affiliation:
College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, PR China State Key Laboratory of Efficient Utilization of Agricultural Water Resources, China Agricultural University, Beijing, 100083, PR China Beijing Engineering Research Center of Safety and Energy Saving Technology for Water Supply Network System, Beijing 100083, PR China
Claus-Dieter Ohl
Affiliation:
Faculty of Natural Sciences, Institute for Physics, Department Soft Matter, Otto-von-Guericke University Magdeburg, Magdeburg 39106, Germany
Fujun Wang
Affiliation:
College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, PR China State Key Laboratory of Efficient Utilization of Agricultural Water Resources, China Agricultural University, Beijing, 100083, PR China Beijing Engineering Research Center of Safety and Energy Saving Technology for Water Supply Network System, Beijing 100083, PR China
*
Corresponding author: Zhifeng Yao, yzf@cau.edu.cn

Abstract

We investigate the dynamics of a cavitation bubble near rigid surfaces decorated with a single gas-entrapping hole to understand the competition between the attraction of the rigid and the repulsion of the free boundary. The dynamics of laser-induced bubbles near this gas-entrapping hole is studied as a function of the stand-off distance and diameter of the hole. Two kinds of toroidal collapses are observed that are the result of the collision of a wide microjet with the bubble wall. The bubble centroid displacement and the strength of the microjet are compared with the anisotropy parameter $\zeta$, which is derived from a Kelvin impulse analysis. We find that the non-dimensional displacement $\delta$ scales with $\zeta$.

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Andrews, E.D., Rivas, D.F. & Peters, I.R. 2020 Cavity collapse near slot geometries. J. Fluid Mech. 901, A29.CrossRefGoogle Scholar
Andrews, E.D., Fernández Rivas, D. & Peters, I.R. 2023 Bubble collapse near porous plates. J. Fluid Mech. 962, A11.CrossRefGoogle Scholar
Arveson, P.T. & Vendittis, D.J. 2000 Radiated noise characteristics of a modern cargo ship. J. Acoust. Soc. Am. 107 (1), 118129.CrossRefGoogle ScholarPubMed
Benjamin, T.B. & Ellis, A.T. 1966 The collapse of cavitation bubbles and the pressures thereby produced against solid boundaries. Phil. Trans. R. Soc. Lond. A Math. Phys. Sci. 260 (1110), 221240.Google Scholar
Bismuth, M., Eck, M. & Ilovitsh, T. 2023 Nanobubble-mediated cancer cell sonoporation using low-frequency ultrasound. Nanoscale 15 (44), 1789917909.CrossRefGoogle ScholarPubMed
Blake, J.R. 1988 The Kelvin impulse: application to cavitation bubble dynamics. ANZIAM Journal 30 (2), 127146.Google Scholar
Blake, J.R. & Gibson, D.C. 1981 Growth and collapse of a vapour cavity near a free surface. J. Fluid Mech. 111, 123140.CrossRefGoogle Scholar
Blake, J.R. & Gibson, D.C. 1987 Cavitation bubbles near boundaries. Annu. Rev. Fluid Mech. 19 (1), 99123.CrossRefGoogle Scholar
Blake, J.R., Leppinen, D.M. & Wang, Q. 2015 Cavitation and bubble dynamics: the Kelvin impulse and its applications. Interface Focus 5 (5), 20150017.CrossRefGoogle ScholarPubMed
Brujan, E.-A., Noda, T., Ishigami, A., Ogasawara, T. & Takahira, H. 2018 Dynamics of laser-induced cavitation bubbles near two perpendicular rigid walls. J. Fluid Mech. 841, 2849.CrossRefGoogle Scholar
Chahine, G.L., Kapahi, A., Choi, J.-K. & Hsiao, C.-T. 2016 Modeling of surface cleaning by cavitation bubble dynamics and collapse. Ultrason. Sonochem. 29, 528549.CrossRefGoogle ScholarPubMed
Cui, P., Zhang, A.-M., Wang, S. & Khoo, B.C. 2018 Ice breaking by a collapsing bubble. J. Fluid Mech. 841, 287309.CrossRefGoogle Scholar
Goh, B.H.T., Ohl, S.W., Klaseboer, E.&Khoo, B.C. 2014 Jet orientation of a collapsing bubble near a solid wall with an attached air bubble. Phys. Fluids 26 (4), 042103(1–15).CrossRefGoogle Scholar
Gong, S.W., Ohl, S.W., Klaseboer, E. & Khoo, B.C. 2010 Scaling law for bubbles induced by different external sources: theoretical and experimental study. Phys. Rev. E Stat. Nonlinear Soft Matt. Phys. 81 (5), 056317.CrossRefGoogle ScholarPubMed
Gregorčič, P., Petkovšek, R.&Možina, J. 2007 Investigation of a cavitation bubble between a rigid boundary and a free surface. J. Appl. Phys. 102 (9), 094904(1–8).CrossRefGoogle Scholar
Guo, G., Zhang, P., Lei, L. & Galindo-Torres, S.A. 2022 A pseudopotential lattice boltzmann model for simulating mass transfer around a rising bubble under real buoyancy effect. Phys. Fluids 34 (8), 083306.CrossRefGoogle Scholar
Huang, G., Zhang, M., Ma, X., Chang, Q., Zheng, C. & Huang, B. 2020 Dynamic behavior of a single bubble between the free surface and rigid wall. Ultrason. Sonochem. 67, 105147.CrossRefGoogle ScholarPubMed
Kim, D. & Kim, D. 2020 Underwater bubble collapse on a ridge-patterned structure. Phys. Fluids 32 (5), 053312.CrossRefGoogle Scholar
Kiyama, A., Shimazaki, T., Gordillo, Jé M. & Tagawa, Y. 2021 Direction of the microjet produced by the collapse of a cavitation bubble located in a corner of a wall and a free surface. Phys. Rev. Fluids 6 (8), 083601.CrossRefGoogle Scholar
Klaseboer, E., Hung, K.C., Wang, C.W.C.W., Wang, C.W., Khoo, B.C., Boyce, P., Debono, S. & Charlier, H. 2005 Experimental and numerical investigation of the dynamics of an underwater explosion bubble near a resilient/rigid structure. J. Fluid Mech. 537, 387413.CrossRefGoogle Scholar
Koch, C., Massimini, M., Boly, M. & Tononi, G. 2016 Neural correlates of consciousness: progress and problems. Nat. Rev. Neurosci. 17 (5), 307321.CrossRefGoogle Scholar
Krieger, J.R. & Chahine, G.L. 2005 Acoustic signals of underwater explosions near surfaces. J. Acoust. Soc. Am. 118 (5), 29612974.CrossRefGoogle Scholar
Lauterborn, W. & Bolle, H. 1975 Experimental investigations of cavitation-bubble collapse in the neighbourhood of a solid boundary. J. Fluid Mech. 72 (2), 391399.CrossRefGoogle Scholar
Lauterborn, W. & Kurz, T. 2010 Physics of bubble oscillations. Rep. Prog. Phys. 73 (10), 106501.CrossRefGoogle Scholar
Lechner, C., Lauterborn, W., Koch, M. & Mettin, R. 2020 Jet formation from bubbles near a solid boundary in a compressible liquid: numerical study of distance dependence. Phys. Rev. Fluids 5 (9), 093604.CrossRefGoogle Scholar
Li, S., van der Meer, D., Zhang, A.-M., Prosperetti, A. & Lohse, D. 2020 Modelling large scale airgun-bubble dynamics with highly non-spherical features. Intl J. Multiphase Flow 122, 103143.CrossRefGoogle Scholar
Li, S., Zhang, A.M., Han, R. & Liu, Y.Q. 2017 Experimental and numerical study on bubble-sphere interaction near a rigid wall. Phys. Fluids 29 (9), 092102.CrossRefGoogle Scholar
Li, S.-M., Zhang, A.-M., Cui, P., Li, S. & Liu, Y.-L. 2023 Vertically neutral collapse of a pulsating bubble at the corner of a free surface and a rigid wall. J. Fluid Mech. 962, A28.CrossRefGoogle Scholar
Lindau, O. & Lauterborn, W. 2003 Cinematographic observation of the collapse and rebound of a laser-produced cavitation bubble near a wall. J. Fluid Mech. 479, 327348.CrossRefGoogle Scholar
Lu, Y., Tan, L., Han, Y. & Liu, M. 2022 Cavitation-vibration correlation of a mixed flow pump under steady state and fast start-up conditions by experiment. Ocean Engng 251, 111158.CrossRefGoogle Scholar
Obreschkow, D., Tinguely, M., Dorsaz, N., Kobel, P., de Bosset, A. & Farhat, M. 2011 Universal scaling law for jets of collapsing bubbles. Phys. Rev. Lett. 107 (20), 204501.CrossRefGoogle ScholarPubMed
Panik, M.J. 2014 Growth Curve Modeling: Theory and Applications. John Wiley & Sons.CrossRefGoogle Scholar
Plesset, M.S. 1949 The dynamics of cavitation bubbles. J. Appl. Mech. 16 (3), 277282.CrossRefGoogle Scholar
Popinet, S. & Zaleski, S. 2002 Bubble collapse near a solid boundary: a numerical study of the influence of viscosity. J. Fluid Mech. 464, 137163.CrossRefGoogle Scholar
Rattray, M. 1951 Perturbation effects in cavitation bubble dynamics. PhD thesis, California Institute of Technology, USA.Google Scholar
Rayleigh, L. 1917 Viii. On the pressure developed in a liquid during the collapse of a spherical cavity. Lond. Edinburgh Dublin Phil. Mag. J. Sci. 34 (200), 9498.CrossRefGoogle Scholar
Reese, H., Schädel, R., Reuter, F. & Ohl, C.-D. 2022 Microscopic pumping of viscous liquids with single cavitation bubbles. J. Fluid Mech. 944, A17.CrossRefGoogle Scholar
Reuter, F., Deiter, C. & Ohl, C.-D. 2022 a Cavitation erosion by shockwave self-focusing of a single bubble. Ultrason. Sonochem. 90, 106131.CrossRefGoogle ScholarPubMed
Reuter, F. & Mettin, R. 2018 Electrochemical wall shear rate microscopy of collapsing bubbles. Phys. Rev. Fluids 3 (6), 063601.CrossRefGoogle Scholar
Reuter, F., Zeng, Q. & Ohl, C.-D. 2022 b The Rayleigh prolongation factor at small bubble to wall stand-off distances. J. Fluid Mech. 944, A11.CrossRefGoogle Scholar
Rodriguez, M., Beig, S.A., Barbier, C.N. & Johnsen, E. 2022 Dynamics of an inertially collapsing gas bubble between two parallel, rigid walls. J. Fluid Mech. 946, A43.CrossRefGoogle Scholar
Rosselló, J.M., Reese, H. & Ohl, C.-D. 2022 Dynamics of pulsed laser-induced cavities on a liquid–gas interface: from a conical splash to a ‘bullet’jet. J. Fluid Mech. 939, A35.CrossRefGoogle Scholar
Shima, A. & Tomita, Y. 1981 The behavior of a spherical bubble near a solid wall in a compressible liquid. Ingenieur-Archiv 51 (3–4), 243255.CrossRefGoogle Scholar
Sieber, A.B., Preso, D.B. & Farhat, M. 2022 Dynamics of cavitation bubbles near granular boundaries. J. Fluid Mech. 947, A39.CrossRefGoogle Scholar
Sun, Y., Du, Y., Yao, Z., Zhong, Q., Geng, S. & Wang, F. 2022 The effect of surface geometry of solid wall on the collapse of a cavitation bubble. J. Fluids Engng 144 (7), 071402.CrossRefGoogle Scholar
Supponen, O. 2017 Collapse phenomena of deformed cavitation bubbles. Tech. Rep, EPFL.CrossRefGoogle Scholar
Wang, J., Liu, K., Yuan, S., Jiang, M. & Wang, Z. 2020 Dynamics of the passive pulsation of a surface-attached air bubble subjected to a nearby oscillating spark-generated bubble. Phys. Fluids 32 (6), 067101.CrossRefGoogle Scholar
Xu, P., Li, B., Ren, Z., Liu, S. & Zuo, Z. 2023 Dynamics of a laser-induced buoyant bubble near a vertical rigid boundary. Phys. Rev. Fluids 8 (8), 083601.CrossRefGoogle Scholar
Xu, W. & Cui, J. 2021 A study of bubble dynamics considering the viscosity effect. Master’s thesis, JiangSu technolgy university, PR China.Google Scholar
Yong, J., Yang, Q., Huo, J., Hou, X. & Chen, F. 2022 Underwater gas self-transportation along femtosecond laser-written open superhydrophobic surface microchannels (<100 $\unicode{x03BC}$ m) for bubble/gas manipulation. Intl J. Extreme Manufactur. 4 (1), 015002.CrossRefGoogle Scholar
Zeng, Q., An, H. & Ohl, C.-D. 2022 Wall shear stress from jetting cavitation bubbles: influence of the stand-off distance and liquid viscosity. J. Fluid Mech. 932, A14.CrossRefGoogle Scholar
Zevnik, J., Patfoort, J., Rosselló, J.M., Ohl, C.-D. & Dular, M. 2024 Dynamics of a cavitation bubble confined in a thin liquid layer at null Kelvin impulse. Phys. Fluids 36 (6), 063340.CrossRefGoogle Scholar
Zhang, A.M., Cui, P., Cui, J. & Wang, Q.X. 2015 Experimental study on bubble dynamics subject to buoyancy. J. Fluid Mech. 776, 137160.CrossRefGoogle Scholar
Zhang, A.-M., Li, S.-M., Xu, R.-Z., Pei, S.-C., Li, S. & Liu, Y.-L. 2024 A theoretical model for compressible bubble dynamics considering phase transition and migration. J. Fluid Mech. 999, A58.CrossRefGoogle Scholar
Zhang, S., Wang, S.P. & Zhang, A.M. 2016 Experimental study on the interaction between bubble and free surface using a high-voltage spark generator. Phys. Fluids 28 (3), 032109.CrossRefGoogle Scholar