Hostname: page-component-5b777bbd6c-v4w92 Total loading time: 0 Render date: 2025-06-21T02:14:15.818Z Has data issue: false hasContentIssue false

Electro-osmotic flow of semi-dilute polyelectrolyte solutions in nanochannels

Published online by Cambridge University Press:  13 June 2025

Xinxi Liu
Affiliation:
MOE Key Laboratory of Thermo-Fluid Science and Engineering, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, PR China
Wenyao Zhang
Affiliation:
PetroChina Shenzhen New Energy Research Institute Co., Ltd, Shenzhen 518063, PR China
Kai Jiao
Affiliation:
MOE Key Laboratory of Thermo-Fluid Science and Engineering, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, PR China
Qiuwang Wang
Affiliation:
MOE Key Laboratory of Thermo-Fluid Science and Engineering, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, PR China
Cunlu Zhao*
Affiliation:
MOE Key Laboratory of Thermo-Fluid Science and Engineering, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, PR China
*
Corresponding author: Cunlu Zhao, mclzhao@xjtu.edu.cn

Abstract

This paper presents a theoretical model for the electro-osmotic flow (EOF) of semi-dilute polyelectrolyte (PE) solutions in nanochannels. We use mean-field theories to describe the properties of electric double layer and viscosity of PE solutions that are prerequisites for constructing the EOF model. The EOF model is validated via a good match to the existing experimental results. Based on the validated EOF model, we conduct a comprehensive analysis of EOF of semi-dilute PE solutions in nanochannels. First, we observe considerable EOF of PE solutions in the uncharged nanochannels, which is in stark contrast to EOF of simple electrolyte solutions. The analyses show that the EOF of PE solutions in uncharged nanochannels is triggered by the external electric field acting on the near-wall non-electroneutral regions resulting from the confinement-induced inhomogeneous distribution of PE monomers. Although the solutions are electroneutral as a whole, the presence of local non-electroneutral regions and the mismatch between non-electroneutral regions and high-viscosity regions lead to the net EOF in uncharged nanochannels. Furthermore, we reveal that the EOF mobility $\mu _{{eof}}$ in uncharged nanochannels exhibits a scaling law $\mu _{{eof}} \propto a^{-0.44}$ (wherein $a$ denotes monomer Kuhn length) and is inversely proportional to the PE chain length, while it decreases nonlinearly with the charge fraction of the PE chains. Moreover, the EOF mobility reaches its maximum at specific bulk monomer concentration, and increases with the nanochannel height before converging to that under no confinement. Second, we analyse the EOF of PE solutions in nanochannels with various wall effects, such as surface charge density, slip length and adsorption length. When the surface charge is absent, the adsorption length significantly influences the direction and magnitude of the EOF, whereas the slip length has no effect. When the wall becomes increasingly charged, the influence of adsorption length on EOF gradually diminishes, while the importance of the slip length progressively intensifies and the EOF is highly influenced by the co-action of various wall effects in a complicated manner. When the surface wall is oppositely charged to polymer monomers, the EOF mobility varies nonlinearly with the surface charge density, while a zero net flow of EOF followed by a direction reversal is discovered when the wall is likely charged to polymer monomers.

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Adachi, Y. & Xiao, J. 2013 Initial stage of bridging flocculation of PSL particles induced by an addition of polyelectrolyte under high ionic strength. Colloids Surf. A: Physicochem. Engng Aspects 435, 127131.10.1016/j.colsurfa.2012.12.042CrossRefGoogle Scholar
Ai, Y., Yalcin, S.E., Gu, D., Baysal, O., Baumgart, H., Qian, S. & Beskok, A. 2010 A low-voltage nano-porous electroosmotic pump. J. Colloid Interface Sci. 350 (2), 465470.10.1016/j.jcis.2010.07.024CrossRefGoogle ScholarPubMed
Alizadeh, A., Hsu, W., Wang, M. & Daiguji, H. 2021 Electroosmotic flow: from microfluidics to nanofluidics. Electrophoresis 42 (7-8), 834868.10.1002/elps.202000313CrossRefGoogle ScholarPubMed
Alshawabkeh, A.N., Yeung, A.T. & Bricka, M.R. 1999 Practical aspects of in-situ electrokinetic extraction. J. Environ. Engng 125 (1), 2735.10.1061/(ASCE)0733-9372(1999)125:1(27)CrossRefGoogle Scholar
Aziz, U.A., Mukarram, A. & Kashif, A. 2020 Electroosmotic slip flow of Oldroyd-B fluid between two plates with non-singular kernel. J. Comput. Appl. Maths 376, 112885.Google Scholar
Bagchi, D., Nguyen, T.D. & Olvera de la Cruz, M. 2020 Surface polarization effects in confined polyelectrolyte solutions. Proc. Natl Acad. Sci. USA 117 (33), 1967719684.10.1073/pnas.2007545117CrossRefGoogle ScholarPubMed
Bagchi, D. & Olvera de la Cruz, M. 2020 Dynamics of a driven confined polyelectrolyte solution. J. Chem. Phys. 153 (18), 184904.10.1063/5.0027049CrossRefGoogle ScholarPubMed
Bhagavatula, N. & Castro, J.M. 2007 Modelling and experimental verification of pressure prediction in the in-mould coating (IMC) process for injection moulded parts. Model. Simul. Mater. Sci. Engng 15 (2), 171189.10.1088/0965-0393/15/2/012CrossRefGoogle Scholar
Bhattacharyya, S. & Bag, N. 2019 Enhanced electroosmotic flow and ion selectivity in a channel patterned with periodically arranged polyelectrolyte-filled grooves. Microfluid. Nanofluid. 23 (3), 46.10.1007/s10404-019-2213-2CrossRefGoogle Scholar
Bhattacharyya, S., Zheng, Z. & Conlisk, A.T. 2005 Electro-osmotic flow in two-dimensional charged micro- and nanochannels. J. Fluid Mech. 540, 247267.10.1017/S0022112005005720CrossRefGoogle Scholar
Biscombe, C.J.C. 2017 The discovery of electrokinetic phenomena: setting the record straight. Angew. Chem. Intl Ed. Engl. 56 (29), 83388340.10.1002/anie.201608536CrossRefGoogle ScholarPubMed
Bondarev, D., Melnikov, S. & Zabolotskiy, V. 2023 New homogeneous and bilayer anion-exchange membranes based on N,N-diallyl-N,N-dimethylammonium chloride and ethyl methacrylate copolymer. J. Membr. Sci. 675, 121510.10.1016/j.memsci.2023.121510CrossRefGoogle Scholar
Borukhov, I., Andelman, D. & Orland, H. 1998 Random polyelectrolytes and polyampholytes in solution. Eur. Phys. J. B 5 (4–6), 869880.10.1007/s100510050513CrossRefGoogle Scholar
Carrillo, J.-M.Y. & Dobrynin, A.V. 2011 Polyelectrolytes in salt solutions: molecular dynamics simulations. Macromolecules 44 (14), 57985816.10.1021/ma2007943CrossRefGoogle Scholar
Carrillo, J.M.Y. & Dobrynin, A.V. 2014 Salt effect on osmotic pressure of polyelectrolyte solutions: simulation study. Polymers (Basel) 6 (7), 18971913.10.3390/polym6071897CrossRefGoogle Scholar
Chen, D., Li, J., Chen, H., Zhang, L., Zhang, H. & Ma, Y. 2019 Electroosmotic flow behavior of viscoelastic LPTT fluid in a microchannel. Micromachines (Basel) 10 (12), 881.10.3390/mi10120881CrossRefGoogle Scholar
Chen, G., Perazzo, A. & Stone, H.A. 2020 Influence of salt on the viscosity of polyelectrolyte solutions. Phys. Rev. Lett. 124 (17), 177801.10.1103/PhysRevLett.124.177801CrossRefGoogle ScholarPubMed
Chen, G., Perazzo, A. & Stone, H.A. 2021 Electrostatics, conformation, and rheology of unentangled semidilute polyelectrolyte solutions. J. Rheo. 65 (4), 507526.10.1122/8.0000137CrossRefGoogle Scholar
Combet, J., Lorchat, P. & Rawiso, M. 2012 Salt-free aqueous solutions of polyelectrolytes: small angle X-ray and neutron scattering characterization. Eur. Phys. J. Special Topics 213 (1), 243265.10.1140/epjst/e2012-01674-3CrossRefGoogle Scholar
Das, S. & Chakraborty, S. 2006 Analytical solutions for velocity, temperature and concentration distribution in electroosmotic microchannel flows of a non-Newtonian bio-fluid. Anal. Chim. Acta 559 (1), 1524.10.1016/j.aca.2005.11.046CrossRefGoogle Scholar
De Gennes, P.G. 1982 Polymers at an interface. Macromolecules 15 (2), 492500.10.1021/ma00230a055CrossRefGoogle Scholar
De Gennes, P.G., Pincus, P., Velasco, R.M. & Brochard, F. 1976 Remarks on polyelectrolyte conformation. J. Phys. 37 (12), 14611473.10.1051/jphys:0197600370120146100CrossRefGoogle Scholar
Dobrynin, A.V. 2020 Polyelectrolytes: on the doorsteps of the second century. Polymer 202, 122714.10.1016/j.polymer.2020.122714CrossRefGoogle Scholar
Dobrynin, A.V., Colby, R.H. & Rubinstein, M. 1995 Scaling theory of polyelectrolyte solutions. Macromolecules 28 (6), 18591871.10.1021/ma00110a021CrossRefGoogle Scholar
Dobrynin, A.V. & Rubinstein, M. 2005 Theory of polyelectrolytes in solutions and at surfaces. Prog. Polym. Sci. 30 (11), 10491118.10.1016/j.progpolymsci.2005.07.006CrossRefGoogle Scholar
DuChanois, R.M., Epsztein, R., Trivedi, J.A. & Elimelech, M. 2019 Controlling pore structure of polyelectrolyte multilayer nanofiltration membranes by tuning polyelectrolyte-salt interactions. J. Membr. Sci. 581, 413420.10.1016/j.memsci.2019.03.077CrossRefGoogle Scholar
El-Shehawy, E.F., El-Dabe, N.T. & El-Desoky, I.M. 2006 Slip effects on the peristaltic flow of a non-Newtonian Maxwellian fluid. Acta Mechanica 186 (1–4), 141159.10.1007/s00707-006-0343-6CrossRefGoogle Scholar
Feng, H. & Wong, T. 2019 Net fluid flow and non-Newtonian effect in induced-charge electro-osmosis of polyelectrolyte solutions. Phys. Rev. E 100 (1), 013105.10.1103/PhysRevE.100.013105CrossRefGoogle ScholarPubMed
Feng, H.C., Huang, Y., Wong, T.N. & Duan, F. 2017 Electrolyte effect in induced charge electroosmosis. Soft Matt. 13 (28), 48644870.10.1039/C7SM00787FCrossRefGoogle ScholarPubMed
Ferrás, L.L., Nóbrega, J.M. & Pinho, F.T. 2012 Analytical solutions for Newtonian and inelastic non-Newtonian flows with wall slip. J. Non-Newtonian Fluid Mech. 175–176, 7688.10.1016/j.jnnfm.2012.03.004CrossRefGoogle Scholar
Fuoss, R.M. 1951 Polyelectrolytes. Discuss. Faraday Soc. 11, 125134.10.1039/df9511100125CrossRefGoogle Scholar
Gartner, T.E. III & Jayaraman, A. 2019 Modeling and simulations of polymers: a roadmap. Macromolecules 52 (3), 755786.10.1021/acs.macromol.8b01836CrossRefGoogle Scholar
Ghelichi, M. & Eikerling, M.H. 2016 Conformational properties of comb-like polyelectrolytes: a coarse-grained MD study. J. Phys. Chem. B 120 (10), 28592867.10.1021/acs.jpcb.6b00568CrossRefGoogle ScholarPubMed
Ghiya, N. & Tiwari, A. 2024 Unsteady electroosmotic flow of Carreau–Newtonian fluids through a cylindrical tube. Intl J. Multiphase Flow 179, 104913.10.1016/j.ijmultiphaseflow.2024.104913CrossRefGoogle Scholar
Ghosh, U., Chaudhury, K. & Chakraborty, S. 2016 Electroosmosis over non-uniformly charged surfaces: modified Smoluchowski slip velocity for second-order fluids. J. Fluid Mech. 809, 664690.10.1017/jfm.2016.681CrossRefGoogle Scholar
Gubbiotti, A., Baldelli, M., Di Muccio, G., Malgaretti, P., Marbach, S. & Chinappi, M. 2022 Electroosmosis in nanopores: computational methods and technological applications. Adv. Phys. 7 (1), 2036638.Google Scholar
Hao, Y., Tang, L., Peng, L., Liu, R., Zhou, T. & Li, J. 2024 Field effect control of ion transport in power-law fluids in a nanochannel. Colloids Surf. A: Physicochem. Engng Aspects 697, 134475.10.1016/j.colsurfa.2024.134475CrossRefGoogle Scholar
Ji, J., Qian, S. & Liu, Z. 2021 Electroosmotic flow of viscoelastic fluid through a constriction microchannel. Micromachines (Basel) 12 (4), 417.10.3390/mi12040417CrossRefGoogle ScholarPubMed
Jiang, J. 2022 Software package: an advanced theoretical tool for inhomogeneous fluids (ATIF). Chin. J. Polym. Sci. 40 (2), 220230.10.1007/s10118-021-2646-4CrossRefGoogle Scholar
Jiang, J., Ginzburg, V.V. & Wang, Z.G. 2018 Density functional theory for charged fluids. Soft Matt. 14 (28), 58785887.10.1039/C8SM00595HCrossRefGoogle ScholarPubMed
Jiang, J., Ginzburg, V.V. & Wang, Z.G. 2019 On the origin of oscillatory interactions between surfaces mediated by polyelectrolyte solution. J. Chem. Phys. 151 (21), 214901.10.1063/1.5123172CrossRefGoogle ScholarPubMed
Jiao, K., Zhang, W., Chuan, R., Yan, H., Zou, A., Wang, Q., Yang, C. & Zhao, C. 2022 Structural features and electrostatic energy storage of electric double layers in confined polyelectrolyte solutions under low-salt conditions. Phys. Chem. Chem. Phys. 24 (44), 2700927022.10.1039/D2CP03576FCrossRefGoogle ScholarPubMed
Karan, P., Chakraborty, J. & Chakraborty, S. 2018 Electrokinetics over hydrophobic surfaces. Electrophoresis 40 (5), 616624.10.1002/elps.201800352CrossRefGoogle ScholarPubMed
Ko, C., Li, D., Malekanfard, A., Wang, Y., Fu, L. & Xuan, X. 2019 Electroosmotic flow of non-Newtonian fluids in a constriction microchannel. Electrophoresis 40 (10), 13871394.10.1002/elps.201800315CrossRefGoogle Scholar
Li, F.Q. & Jian, Y.J. 2019 Solute dispersion generated by alternating current electric field through polyelectrolyte-grafted nanochannel with interfacial slip. Intl J. Heat Mass Transfer 141, 10661077.10.1016/j.ijheatmasstransfer.2019.07.044CrossRefGoogle Scholar
Li, F.Q., Jian, Y.J., Chang, L., Zhao, G.P. & Yang, L.G. 2016 Alternating current electroosmotic flow in polyelectrolyte-grafted nanochannel. Colloids Surf. B 147, 234241.10.1016/j.colsurfb.2016.07.064CrossRefGoogle ScholarPubMed
Li, Z. & Wu, J. 2006 Density functional theory for polyelectrolytes near oppositely charged surfaces. Phys. Rev. Lett. 96 (4), 048302.10.1103/PhysRevLett.96.048302CrossRefGoogle ScholarPubMed
Liang, H. & de Pablo, J.J. 2022 A coarse-grained molecular dynamics study of strongly charged polyelectrolyte coacervates: interfacial, structural, and dynamical properties. Macromolecules 55 (10), 41464158.10.1021/acs.macromol.2c00246CrossRefGoogle Scholar
Lopez, C.G. 2019 Entanglement properties of polyelectrolytes in salt-free and excess-salt solutions. ACS Macro Lett. 8 (8), 979983.10.1021/acsmacrolett.9b00161CrossRefGoogle ScholarPubMed
Lopez, C.G., Colby, R.H., Graham, P. & Cabral, J.T. 2017 Viscosity and scaling of semiflexible polyelectrolyte NaCMC in aqueous salt solutions. Macromolecules 50 (1), 332338.10.1021/acs.macromol.6b02261CrossRefGoogle Scholar
Lopez, C.G., Rogers, S.E., Colby, R.H., Graham, P. & Cabral, J.T. 2015 Structure of sodium carboxymethyl cellulose aqueous solutions: a SANS and rheology study. J. Polym. Sci. 53 (7), 492501.10.1002/polb.23657CrossRefGoogle ScholarPubMed
Ma, D., Su, M., Qian, J., Wang, Q., Meng, F., Ge, X., Ye, Y. & Song, C. 2020 Heavy metal removal from sewage sludge under citric acid and electroosmotic leaching processes. Separation Purif. Technol. 242, 116822.10.1016/j.seppur.2020.116822CrossRefGoogle Scholar
Manning, G.S. 1978 Molecular theory of polyelectrolyte solutions with applications to electrostatic properties of polynucleotides. Q. Rev. Biophys. 11 (2), 179246.10.1017/S0033583500002031CrossRefGoogle ScholarPubMed
Martínez, L., Bautista, O., Escandón, J. & Méndez, F. 2016 Electroosmotic flow of a Phan-Thien–Tanner fluid in a wavy-wall microchannel. Colloids Surf. A: Physicochem. Engng Aspects 498, 719.10.1016/j.colsurfa.2016.02.036CrossRefGoogle Scholar
Matsumoto, A. 2022 Rheology of polyelectrolyte solutions: current understanding and perspectives. Nihon Reoroji Gakkaishi 50 (1), 4350.10.1678/rheology.50.43CrossRefGoogle Scholar
Misra, J.C. & Sinha, A. 2015 Electro-osmotic flow and heat transfer of a non-Newtonian fluid in a hydrophobic microchannel with Navier slip. J. Hydrodyn. 27 (5), 647657.10.1016/S1001-6058(15)60527-3CrossRefGoogle Scholar
Mondal, A. & Shit, G.C. 2017 Transport of magneto-nanoparticles during electro-osmotic flow in a micro-tube in the presence of magnetic field for drug delivery application. J. Magn. Magn. Mater. 442, 319328.10.1016/j.jmmm.2017.06.131CrossRefGoogle Scholar
Murtaza, S., Kumam, P., Ahmad, Z., Sitthithakerngkiet, K. & Ali, I.E. 2022 Finite difference simulation of fractal-fractional model of electro-osmotic flow of Casson fluid in a micro channel. IEEE Access 10, 2668126692.10.1109/ACCESS.2022.3148970CrossRefGoogle Scholar
Nakamura, I. 2018 Effects of dielectric inhomogeneity and electrostatic correlation on the solvation energy of ions in liquids. J. Phys. Chem. B 122 (22), 60646071.10.1021/acs.jpcb.8b01465CrossRefGoogle ScholarPubMed
Ng, C. 2013 Combined pressure-driven and electroosmotic flow of Casson fluid through a slit microchannel. J. Non-Newtonian Fluid Mech. 198, 19.10.1016/j.jnnfm.2013.03.003CrossRefGoogle Scholar
Ng, C. & Qi, C. 2014 Electroosmotic flow of a power-law fluid in a non-uniform microchannel. J. Non-Newtonian Fluid Mech. 208, 118125.10.1016/j.jnnfm.2014.04.008CrossRefGoogle Scholar
Nierlich, M., Boue, F., Lapp, A. & Oberthür, R. 1985 Characteristic lengths and the structure of salt free polyelectrolyte solutions: a small angle neutron scattering study. Colloid Polym. Sci. 263 (12), 955964.10.1007/BF01410988CrossRefGoogle Scholar
Noreen, S., Waheed, S., Hussanan, A. & Lu, D. 2019 Analytical solution for heat transfer in electroosmotic flow of a Carreau fluid in a wavy microchannel. Appl. Sci. 9 (20), 4359.10.3390/app9204359CrossRefGoogle Scholar
Olivares, M.L., Vera-Candioti, L. & Berli, C.L.A. 2009 The EOF of polymer solutions. Electrophoresis 30 (5), 921928.10.1002/elps.200800578CrossRefGoogle ScholarPubMed
Panchun, L., Shaowei, W. & Moli, Z. 2020 Numerical study of rotating electroosmotic flow of Oldroyd-B fluid in a microchannel with slip boundary condition. Chin. J. Phys. 65, 459471.Google Scholar
Perez Ocampo, L., Weiss, L.B., Jardat, M., Likos, C.N. & Dahirel, V. 2022 Electroosmotic flow induced lift forces on polymer chains in nanochannels. ACS Polym. Au 2 (4), 245256.10.1021/acspolymersau.1c00058CrossRefGoogle ScholarPubMed
Podgornik, R. 1992 Self-consistent-field theory for confined polyelectrolyte chains. J. Phys. Chem. 96 (2), 884896.10.1021/j100181a066CrossRefGoogle Scholar
Radhakrishnan, K. & Singh, S.P. 2021 Collapse of a confined polyelectrolyte chain under an AC electric field. Macromolecules 54 (17), 79988007.10.1021/acs.macromol.1c00637CrossRefGoogle Scholar
Roy, D., Bhattacharjee, S. & De, S. 2020 Mass transfer of a neutral solute in polyelectrolyte grafted soft nanochannel with porous wall. Electrophoresis 41 (7–8), 578587.10.1002/elps.201900282CrossRefGoogle ScholarPubMed
Sarma, R., Deka, N., Sarma, K. & Mondal, P.K. 2018 Electroosmotic flow of Phan-Thien–Tanner fluids at high zeta potentials: an exact analytical solution. Phys. Fluids 30 (6), 062001.10.1063/1.5033974CrossRefGoogle Scholar
Shafir, A., Andelman, D. & Netz, R.R. 2003 Adsorption and depletion of polyelectrolytes from charged surfaces. J. Phys. Chem. 119 (4), 23552362.10.1063/1.1580798CrossRefGoogle Scholar
Shen, K., Fan, M. & Hall, L.M. 2021 Molecular dynamics simulations of ion-containing polymers using generic coarse-grained models. Macromolecules 54 (5), 20312052.10.1021/acs.macromol.0c02557CrossRefGoogle Scholar
Shojaeian, M. & Koşar, A. 2014 Convective heat transfer and entropy generation analysis on Newtonian and non-Newtonian fluid flows between parallel-plates under slip boundary conditions. Intl J. Heat Mass Transfer 70, 664673.10.1016/j.ijheatmasstransfer.2013.11.020CrossRefGoogle Scholar
Siria, A., Bocquet, M. & Bocquet, L. 2017 New avenues for the large-scale harvesting of blue energy. Nat. Rev. Chem. 1 (11), 0091.10.1038/s41570-017-0091CrossRefGoogle Scholar
Sivasankar, V., Etha, S., Sachar, H. & Das, S. 2021 Thermo-osmotic transport in nanochannels grafted with pH-responsive polyelectrolyte brushes modelled using augmented strong stretching theory. J. Fluid Mech. 917, A31.10.1017/jfm.2021.281CrossRefGoogle Scholar
Squires, T.M. & Bazant, M.Z. 2006 Breaking symmetries in induced-charge electro-osmosis and electrophoresis. J. Fluid Mech. 560, 65101.10.1017/S0022112006000371CrossRefGoogle Scholar
Srivally, A. & Reza, M. 2023 Analytical solution for electroosmotic flow of Casson fluid in varying microchannel with zeta potential. J. Central South Univ. 30 (8), 26272641.10.1007/s11771-023-5366-9CrossRefGoogle Scholar
vander Straeten, A., Bratek-Skicki, A., Germain, L., D’Haese, C., Eloy, P., Fustin, C.A. & Dupont-Gillain, C. 2017 Protein-polyelectrolyte complexes to improve the biological activity of proteins in layer-by-layer assemblies. Nanoscale 9 (44), 1718617192.10.1039/C7NR04345GCrossRefGoogle ScholarPubMed
Talebi, R., Ashrafizadeh, S.N. & Sadeghi, A. 2021 Hydrodynamic dispersion by electroosmotic flow in soft microchannels: consideration of different properties for electrolyte and polyelectrolyte layer. Chem. Engng Sci. 229, 116058.10.1016/j.ces.2020.116058CrossRefGoogle Scholar
Tang, G., Li, X., He, Y. & Tao, W. 2009 Electroosmotic flow of non-Newtonian fluid in microchannels. J. Non-Newtonian Fluid Mech. 157 (1–2), 133137.10.1016/j.jnnfm.2008.11.002CrossRefGoogle Scholar
Uematsu, Y. 2015 Nonlinear electro-osmosis of dilute non-adsorbing polymer solutions with low ionic strength. Soft Matt. 11 (37), 74027411.10.1039/C5SM01507CCrossRefGoogle ScholarPubMed
Uematsu, Y. & Araki, T. 2013 Electro-osmotic flow of semidilute polyelectrolyte solutions. J. Chem. Phys. 139 (9), 094901.10.1063/1.4820236CrossRefGoogle ScholarPubMed
Üzüm, C., Christau, S. & von Klitzing, R. 2011 Structuring of polyelectrolyte (NaPSS) solutions in bulk and under confinement as a function of concentration and molecular weight. Macromolecules 44 (19), 77827791.10.1021/ma201466aCrossRefGoogle Scholar
Üzüm, C., Makuska, R. & von Klitzing, R. 2012 Effect of molecular architecture on the polyelectrolyte structuring under confinement. Macromolecules 45 (7), 31683176.10.1021/ma202763mCrossRefGoogle Scholar
Varongchayakul, N., Huttner, D., Grinstaff, M.W. & Meller, A. 2018 Sensing native protein solution structures using a solid-state nanopore: unraveling the states of VEGF. Sci. Rep. UK 8 (1), 1017.10.1038/s41598-018-19332-yCrossRefGoogle ScholarPubMed
Vlassiouk, I., Smirnov, S. & Siwy, Z. 2008 Ionic selectivity of single nanochannels. Nano Lett. 8 (7), 19781985.10.1021/nl800949kCrossRefGoogle ScholarPubMed
Woodward, C.E. & Jonsson, B. 1991 Monte-Carlo and mean field studies of a polyelectrolyte in salt solution. Chem. Phys. 155 (2), 207219.10.1016/0301-0104(91)87021-MCrossRefGoogle Scholar
Xu, Y., Nazeer, M., Hussain, F., Khan, M.I., Hameed, M., Shah, N.A. & Chung, J.D. 2021 Electro-osmotic flow of biological fluid in divergent channel: drug therapy in compressed capillaries. Sci. Rep. UK 11 (1), 23652.10.1038/s41598-021-03087-0CrossRefGoogle ScholarPubMed
Yethiraj, A. 2009 Liquid state theory of polyelectrolyte solutions. J. Phys. Chem. B 113 (6), 15391551.10.1021/jp8069964CrossRefGoogle ScholarPubMed
Yu, B., Liang, H., Rumyantsev, A.M. & de Pablo, J.J. 2022 Isotropic-to-nematic transition in salt-free polyelectrolyte coacervates from coarse-grained simulations. Macromolecules 55 (21), 96279639.10.1021/acs.macromol.2c01674CrossRefGoogle Scholar
Zhao, C. & Yang, C. 2012 Advances in electrokinetics and their applications in micro/nano fluidics. Microfluid. Nanofluid. 13 (2), 179203.10.1007/s10404-012-0971-1CrossRefGoogle Scholar
Zhao, C. & Yang, C. 2013 Electrokinetics of non-Newtonian fluids: a review. Adv. Colloid Interface Sci. 201, 94108.10.1016/j.cis.2013.09.001CrossRefGoogle ScholarPubMed
Zhao, C., Zholkovskij, E., Masliyah, J.H. & Yang, C. 2008 Analysis of electroosmotic flow of power-law fluids in a slit microchannel. J. Colloid Interface Sci. 326 (2), 503510.10.1016/j.jcis.2008.06.028CrossRefGoogle Scholar
Zhu, Z., Luo, X. & Paddison, S.J. 2022 Coarse-grained modeling of ion-containing polymers. Chem. Rev. 122 (12), 1071010745.10.1021/acs.chemrev.1c00913CrossRefGoogle ScholarPubMed