Hostname: page-component-784d4fb959-mvngg Total loading time: 0 Render date: 2025-07-15T03:39:13.318Z Has data issue: false hasContentIssue false

Elliptic liquid jets in a supersonic cross-flow

Published online by Cambridge University Press:  07 July 2025

Chandrasekhar Medipati
Affiliation:
Interdisciplinary Centre for Energy Research, Indian Institute of Science, Bangalore, India Propulsion & Power, Delft University of Technology, Delft, The Netherlands
Raghuraman N. Govardhan*
Affiliation:
Department of Mechanical Engineering, Indian Institute of Science, Bangalore, India
Sivakumar Deivandran
Affiliation:
Department of Aerospace Engineering, Indian Institute of Science, Bangalore, India
Cameron Tropea*
Affiliation:
Department of Mechanical Engineering, Indian Institute of Science, Bangalore, India Department of Mechanical and Process Engineering, Technische Universität Darmstadt, Darmstadt, Germany
*
Corresponding authors: Raghuraman N. Govardhan, rng@iisc.ac.in; Cameron Tropea, tropea@sla.tu-darmstadt.de
Corresponding authors: Raghuraman N. Govardhan, rng@iisc.ac.in; Cameron Tropea, tropea@sla.tu-darmstadt.de

Abstract

In the present work, we experimentally investigate the transverse injection of elliptic liquid jets into a supersonic cross-flow ($M_\infty$ = 2.5). The primary focus is to understand the effect of injection orifice aspect ratio ($\textit{AR}$ = spanwise/streamwise dimension), on the liquid jet breakup mechanism, the flow field around the liquid jet and the resulting droplet sizes formed downstream, for three $\textit{AR}$ cases ($\textit{AR}$ = 0.3, 1, 3.3). We find that the $\textit{AR}$ = 0.3 case has large unsteadiness in the spray core due to relatively large wavelength Rayleigh–Taylor (RT) waves formed on the liquid jet surface. However, the primary jet breakup occurs through Kelvin–Helmholtz (KH) instabilities formed on the large lateral surfaces, as in coaxial liquid jet breakup. This leads to a higher Sauter mean diameter (SMD) of the droplets in the spray core with a wider range of droplet sizes compared with the circular case ($\textit{AR}$ = 1.0). However, in the case of $\textit{AR}$ = 3.3, the RT waves are more intense and of smaller wavelength due to the large drag on the liquid jet, which results in a direct catastrophic breakup of the liquid jet by the RT waves. This results in a relatively steady liquid jet and shock structure with the formation of a fine spray and smaller droplets in the spray core than for the $\textit{AR}=1.0$ case. The study shows the importance of the orifice $\textit{AR}$ on the flow around, and the spray downstream of, the liquid jet injection into supersonic cross-flow.

Information

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Amighi, A. & Ashgriz, N. 2019 Global droplet size in liquid jet in a high-temperature and high-pressure crossflow. AIAA J. 57 (3), 12601274.10.2514/1.J056496CrossRefGoogle Scholar
Amini, G., Lv, Y., Dolatabadi, A. & Ihme, M. 2014 Instability of elliptic liquid jets: temporal linear stability theory and experimental analysis. Phys. Fluids 26 (11), 114105-1–114105-22.10.1063/1.4901246CrossRefGoogle Scholar
Arienti, M. & Soteriou, M.C. 2009 Time-resolved proper orthogonal decomposition of liquid jet dynamics. Phys. Fluids 21 (11), 112104-1–112104-15.10.1063/1.3263165CrossRefGoogle Scholar
Ashgriz, N. 2011 Handbook of Atomization and Sprays: Theory and Applications. Springer.10.1007/978-1-4419-7264-4CrossRefGoogle Scholar
Becker, J. & Hassa, C. 2002 Breakup and atomization of a kerosene jet in crossflowat elevated pressure. Atomiz. Sprays 12 (1-3), 13.10.1615/AtomizSpr.v12.i123.30CrossRefGoogle Scholar
Behzad, M., Ashgriz, N. & Karney, B.W. 2016 Surface breakup of a non-turbulent liquid jet injected into a high pressure gaseous crossflow. Intl J. Multiphase Flow 80, 100117.10.1016/j.ijmultiphaseflow.2015.11.007CrossRefGoogle Scholar
Behzad, M., Ashgriz, N. & Mashayek, A. 2015 Azimuthal shear instability of a liquid jet injected into a gaseous cross-flow. J. Fluid Mech. 767, 146172.10.1017/jfm.2015.36CrossRefGoogle Scholar
Beloki Perurena, J., Asma, C.O., Theunissen, R. & Chazot, O. 2009 Experimental investigation of liquid jet injection into Mach 6 hypersonic crossflow. Exp. Fluids 46 (3), 403417.10.1007/s00348-008-0566-5CrossRefGoogle Scholar
Ben-Yakar, A., Mungal, M.G. & Hanson, R.K. 2006 Time evolution and mixing characteristics of hydrogen and ethylene transverse jets in supersonic crossflows. Phys. Fluids 18 (2), 026101-1–026101-16.10.1063/1.2139684CrossRefGoogle Scholar
Broumand, M. & Birouk, M. 2016 a Liquid jet in a subsonic gaseous crossflow: Recent progress and remaining challenges. Prog. Energy Combust. 57, 129.10.1016/j.pecs.2016.08.003CrossRefGoogle Scholar
Broumand, M. & Birouk, M. 2016 b Two-zone model for predicting the trajectory of liquid jet in gaseous crossflow. AIAA J. 54 (5), 14991511.10.2514/1.J054440CrossRefGoogle Scholar
Broumand, M. & Birouk, M. 2017 Effect of nozzle-exit conditions on the near-field characteristics of a transverse liquid jet in a subsonic uniform cross airflow. Phys. Fluids 29 (11), 113303-1–113303-15.10.1063/1.4994978CrossRefGoogle Scholar
Broumand, M. & Birouk, M. 2019 Liquid jet primary breakup in a turbulent cross-airflow at low Weber number. J. Fluid Mech. 879, 775792.10.1017/jfm.2019.704CrossRefGoogle Scholar
Chai, X., Iyer, P.S. & Mahesh, K. 2015 Numerical study of high speed jets in crossflow. J. Fluid Mech. 785, 152188.10.1017/jfm.2015.612CrossRefGoogle Scholar
Chandrasekhar, S. 2013 Hydrodynamic and Hydromagnetic Stability. Courier Corporation.Google Scholar
Clemens, N.T. & Narayanaswamy, V. 2014 Low-frequency unsteadiness of shock wave/turbulent boundary layer interactions. Annu. Rev. Fluid Mech. 46 (1), 469492.10.1146/annurev-fluid-010313-141346CrossRefGoogle Scholar
Dolling, D. 2000 50 years of shock wave/boundary layer interaction research-what next? In Fluids 2000 Conference and Exhibit, pp. 2596. AIAA.10.2514/6.2000-2596CrossRefGoogle Scholar
Dussauge, J.P. & Piponniau, S. 2008 Shock/boundary-layer interactions: possible sources of unsteadiness. J. Fluid. Struct. 24 (8), 11661175.10.1016/j.jfluidstructs.2008.06.003CrossRefGoogle Scholar
Engel, O.G. 1958 Fragmentation of waterdrops in the zone. J. Res. Natl Bur. Stand. 60 (3), 245.10.6028/jres.060.029CrossRefGoogle Scholar
Fdida, N., Mallart-Martinez, N., Le Pichon, T. & Vincent-Randonnier, A. 2022 Penetration of a kerosene liquid jet injected in a high temperature Mach 2 supersonic crossflow. Exp. Fluids 63 (10), 154.10.1007/s00348-022-03480-zCrossRefGoogle Scholar
Fric, T.F. & Roshko, A. 1994 Vortical structure in the wake of a transverse jet. J. Fluid Mech. 279, 147.10.1017/S0022112094003800CrossRefGoogle Scholar
Fries, D., Ranjan, D. & Menon, S. 2021 Turbulent mixing and trajectories of jets in a supersonic cross-flow with different injectants. J. Fluid Mech. 911, A45-1–A45-40.10.1017/jfm.2020.1065CrossRefGoogle Scholar
Ganapathisubramani, B., Clemens, N.T. & Dolling, D.S. 2007 Effects of upstream boundary layer on the unsteadiness of shock-induced separation. J. Fluid Mech. 585, 369394.10.1017/S0022112007006799CrossRefGoogle Scholar
Ghenai, C., Sapmaz, H. & Lin, C. 2009 Penetration height correlations for non-aerated and aerated transverse liquid jets in supersonic cross flow. Exp. Fluids 46 (1), 121129.10.1007/s00348-008-0547-8CrossRefGoogle Scholar
Gowen, F.E. & Perkins, E.W. 1953 Drag of circular cylinders for a wide range of Reynolds numbers and Mach numbers. Tech. Rep. NACA-TN-2960. National Advisory Committee for Aeronautics.Google Scholar
Gruber, M.R., Nejad, A.S., Chen, T.H. & Dutton, J.C. 1996 Bow shock/jet interaction in compressible transverse injection flowfields. AIAA J. 34 (10), 21912193.10.2514/3.13372CrossRefGoogle Scholar
Gruber, M.R., Nejad, A.S., Chen, T.H. & Dutton, J.C. 1997 Compressibility effects in supersonic transverse injection flowfields. Phys. Fluids 9 (5), 14481461.10.1063/1.869257CrossRefGoogle Scholar
Gruber, M.R., Nejad, A.S., Chen, T.H. & Dutton, J.C. 2000 Transverse injection from circular and elliptic nozzles into a supersonic crossflow. J. Propul. Power 16 (3), 449457.10.2514/2.5609CrossRefGoogle Scholar
Guildenbecher, D.R., Gao, J., Chen, J. & Sojka, P.E. 2017 Characterization of drop aerodynamic fragmentation in the bag and sheet-thinning regimes by crossed-beam, two-view, digital in-line holography. Intl J. Multiphase Flow 94, 107122.10.1016/j.ijmultiphaseflow.2017.04.011CrossRefGoogle Scholar
Gutmark, E.J. & Grinstein, F.F. 1999 Flow control with noncircular jets. Annu. Rev. Fluid Mech. 31 (1), 239272.10.1146/annurev.fluid.31.1.239CrossRefGoogle Scholar
Heddleson, C.F., Brown, D.L. & Cliffe, R.T. 1957 Summary of drag coefficients of various shaped cylinders, Tech. Rep. Aircraft Nuclear Propulsion Department.Google Scholar
Herrmann, M., Arienti, M. & Soteriou, M. 2011 The impact of density ratio on the liquid core dynamics of a turbulent liquid jet injected into a crossflow. J. Engng Gas Turbines Power 133 (6), 061501.10.1115/1.4002273CrossRefGoogle Scholar
Hsiang, L.-P. & Faeth, G.M. 1992 Near-limit drop deformation and secondary breakup. Intl J. Multiphase Flow 18 (5), 635652.10.1016/0301-9322(92)90036-GCrossRefGoogle Scholar
Inamura, T. & Nagai, N. 1997 Spray characteristics of liquid jet traversing subsonic airstreams. J. Propul. Power 13 (2), 250256.10.2514/2.5156CrossRefGoogle Scholar
Jackiw, I.M. & Ashgriz, N. 2022 Prediction of the droplet size distribution in aerodynamic droplet breakup. J. Fluid Mech. 940, A17.10.1017/jfm.2022.249CrossRefGoogle Scholar
Jadidi, M., Sreekumar, V. & Dolatabadi, A. 2019 Breakup of elliptical liquid jets in gaseous crossflows at low Weber numbers. J. Vis. 22 (2), 259271.Google Scholar
Johnson, J.A., Marsh, A.W., Douglas, E.J., Ochs, B.A., Hammack, S.D., Menon, S. & Mazumdar, Y.C. 2024 Digital holography for the study of non-aerated liquid jets in supersonic crossflow. Proc. Combust. Inst. 40 (1-4), 105471.10.1016/j.proci.2024.105471CrossRefGoogle Scholar
Joseph, D.D., Belanger, J. & Beavers, G.S. 1999 Breakup of a liquid drop suddenly exposed to a high-speed airstream. Intl J. Multiphase Flow 25 (6-7), 12631303.10.1016/S0301-9322(99)00043-9CrossRefGoogle Scholar
Karagozian, A.R. 2010 Transverse jets and their control. Prog. Energy Combust. 36 (5), 531553.10.1016/j.pecs.2010.01.001CrossRefGoogle Scholar
Kashdan, J–T., Shrimpton, J–S. & Whybrew, A. 2003 Two-phase flow characterization by automated digital image analysis. Part 1: fundamental principles and calibration of the technique. Part. Part. Syst. Charact. 20 (6), 387397.10.1002/ppsc.200300897CrossRefGoogle Scholar
Kashdan, J.T., Shrimpton, J.S. & Whybrew, A. 2004 Two-phase flow characterization by automated digital image analysis. Part 2: application of pdia for sizing sprays. Part. Part. Syst. Charact. 21 (1), 1523.10.1002/ppsc.200400898CrossRefGoogle Scholar
Kasyap, T.V., Sivakumar, D. & Raghunandan, B.N. 2009 Flow and breakup characteristics of elliptical liquid jets. Intl J. Multiphase Flow 35 (1), 819.10.1016/j.ijmultiphaseflow.2008.09.002CrossRefGoogle Scholar
Kourmatzis, A., Pham, P.X. & Masri, A.R. 2015 Characterization of atomization and combustion in moderately dense turbulent spray flames. Combust. Flame 162 (4), 978996.10.1016/j.combustflame.2014.09.021CrossRefGoogle Scholar
Kuhn, M.B. & Desjardins, O. 2022 Experimentally validated high-fidelity simulations of a liquid jet in supersonic crossflow. Intl J. Multiphase Flow 156, 104195.10.1016/j.ijmultiphaseflow.2022.104195CrossRefGoogle Scholar
Li, P., Wang, Z., Sun, M. & Wang, H. 2017 Numerical simulation of the gas-liquid interaction of a liquid jet in supersonic crossflow. Acta Astronaut. 134, 333344.10.1016/j.actaastro.2016.12.025CrossRefGoogle Scholar
Lim, T.T., New, T.H. & Luo, S.C. 2006 Scaling of trajectories of elliptic jets in crossflow. AIAA J. 44 (12), 31573160.10.2514/1.25937CrossRefGoogle Scholar
Lin, K.C., Kennedy, P. & Jackson, T. 2002 Penetration heights of liquid jets in high-speed crossflows. In 40th AIAA Aerospace Sciences Meeting & Exhibit, pp. 873. AIAA.10.2514/6.2002-873CrossRefGoogle Scholar
Lin, K.C., Kennedy, P. & Jackson, T. 2004 Structures of water jets in a Mach 1.94 supersonic crossflow. In 42nd AIAA Aerospace Sciences Meeting and Exhibit, pp. 971. AIAA.10.2514/6.2004-971CrossRefGoogle Scholar
Liu, H., Guo, Y. & Lin, W. 2016 Numerical simulations of spray jet in supersonic crossflows using an Eulerian approach with an SMD model. Intl J. Multiphase Flow 82, 4964.10.1016/j.ijmultiphaseflow.2016.03.003CrossRefGoogle Scholar
Maarmottant, P. & Villermaux, E. 2004 On spray formation. J. Fluid Mech. 498, 73111.10.1017/S0022112003006529CrossRefGoogle Scholar
Mahesh, K. 2013 The interaction of jets with crossflow. Annu. Rev. Fluid Mech. 45 (1), 379407.10.1146/annurev-fluid-120710-101115CrossRefGoogle Scholar
Mashayek, A., Jafari, A. & Ashgriz, N. 2008 Improved model for the penetration of liquid jets in subsonic crossflows. AIAA J. 46 (11), 26742686.10.2514/1.28254CrossRefGoogle Scholar
Mazallon, J., Dai, Z. & Faeth, G.M. 1999 Primary breakup of nonturbulent round liquid jets in gas crossflows. Atomiz. Sprays 9 (3), 291312.10.1615/AtomizSpr.v9.i3.40CrossRefGoogle Scholar
Medipati, C., Deivandren, S. & Govardhan, R.N. 2023 Liquid jet injection in supersonic crossflow: self-induced jet oscillations and its effects. Intl J. Multiphase Flow 158, 104265.10.1016/j.ijmultiphaseflow.2022.104265CrossRefGoogle Scholar
Munuswamy, N. 2020 Jet injection into supersonic crossflow: flowfield and mixing studies. Phd thesis. Indian Institute of Science, India.Google Scholar
Munuswamy, N. & Govardhan, R.N. 2022 Shock wave boundary layer interactions in sonic gas jet injection into supersonic crossflow. Exp. Fluids 63 (9), 141.10.1007/s00348-022-03488-5CrossRefGoogle Scholar
Muppidi, S. & Mahesh, K. 2005 Study of trajectories of jets in crossflow using direct numerical simulations. J. Fluid Mech. 530, 81100.10.1017/S0022112005003514CrossRefGoogle Scholar
Murugan, J.N. & Govardhan, R.N. 2016 Shock wave–boundary layer interaction in supersonic flow over a forward-facing step. J. Fluid Mech. 807, 258302.10.1017/jfm.2016.574CrossRefGoogle Scholar
Murugappan, S., Gutmark, E. & Carter, C. 2005 Control of penetration and mixing of an excited supersonic jet into a supersonic cross stream. Phys. Fluids 17 (10), 106101-1–106101-13.10.1063/1.2099027CrossRefGoogle Scholar
Nejad, A.S. & Schetz, J.A. 1983 Effects of properties and location in the plume on droplet diameter for injection in a supersonic stream. AIAA J. 21 (7), 956961.10.2514/3.8183CrossRefGoogle Scholar
New, T.H., Lim, T.T. & Luo, S.C. 2003 Elliptic jets in cross-flow. J. Fluid Mech. 494, 119140.10.1017/S0022112003005925CrossRefGoogle Scholar
New, T.H., Lim, T.T. & Luo, S.C. 2004 A flow field study of an elliptic jet in cross flow using DPIV technique. Exp. Fluids 36 (4), 604618.10.1007/s00348-003-0733-7CrossRefGoogle Scholar
Nicholls, J.A. & Ranger, A.A. 1969 Aerodynamic shattering of liquid drops. AIAA J. 7 (2), 285290.10.2514/3.5087CrossRefGoogle Scholar
Pilch, M. & Erdman, C.A. 1987 Use of breakup time data and velocity history data to predict the maximum size of stable fragments for acceleration-induced breakup of a liquid drop. Intl J. Multiphase Flow 13 (6), 741757.10.1016/0301-9322(87)90063-2CrossRefGoogle Scholar
Portz, R. & Segal, C. 2006 Penetration of gaseous jets in supersonic flows. AIAA J. 44 (10), 24262429.10.2514/1.23541CrossRefGoogle Scholar
Prakash, R.S., Sinha, A., Tomar, G. & Ravikrishna, R.V. 2018 Liquid jet in crossflow–effect of liquid entry conditions. Exp. Therm. Fluid Sci. 93, 4556.10.1016/j.expthermflusci.2017.12.012CrossRefGoogle Scholar
Rajesh, K.R., Kulkarni, V., Vankeswaram, S.K., Sakthikumar, R. & Deivandren, S. 2023 Drop size characteristics of sprays emanating from circular and non-circular orifices in the atomization regime. J. Aerosol Sci. 174, 106245.10.1016/j.jaerosci.2023.106245CrossRefGoogle Scholar
Reinecke, W.G. & McKay, W.L. 1969 Experiments on water drop breakup behind mach 3 to 12 shocks, Tech. Rep. Avco Corp, Avco Government Products Group.Google Scholar
Reinecke, W.G. & Waldman, G.D. 1970 A study of drop breakup behind strong shocks with applications to flight. Avco Rep. AVSD-0110-70-77. Avco Report AVSD.10.21236/AD0871218CrossRefGoogle Scholar
Sallam, K.A., Aalburg, C. & Faeth, G.M. 2004 Breakup of round nonturbulent liquid jets in gaseous crossflow. AIAA J. 42 (12), 25292540.10.2514/1.3749CrossRefGoogle Scholar
Sathiyamoorthy, K., Danish, T.H., Iyengar, V.S., Srinivas, J., Harikrishna, X., Muruganandam, T.M. & Chakravarthy, S.R. 2020 Penetration and combustion studies of tandem liquid jets in supersonic crossflow. J. Propul. Power 36 (6), 920930.10.2514/1.B38047CrossRefGoogle Scholar
Sharma, S., Singh, A.P., Rao, S.S., Kumar, A. & Basu, S. 2021 Shock induced aerobreakup of a droplet. J. Fluid Mech. 929, A27.10.1017/jfm.2021.860CrossRefGoogle Scholar
Sinha, A., Prakash, R.S., Mohan, A.M. & Ravikrishna, R.V. 2015 Airblast spray in crossflow–structure, trajectory and droplet sizing. Intl J. Multiphase Flow 72, 97111.10.1016/j.ijmultiphaseflow.2015.02.008CrossRefGoogle Scholar
Song, J., Cary Cain, C. & Guen Lee, J. 2015 Liquid jets in subsonic air crossflow at elevated pressure. J. Engng Gas Turbines Power 137 (4), 041502.10.1115/1.4028565CrossRefGoogle Scholar
Taylor, G.I. 1950 The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. i. Proc. R. Soc. Lond. A: Math. Phys. Sci. 201, 192196.Google Scholar
Theofanous, T.G. 2011 Aerobreakup of Newtonian and viscoelastic liquids. Annu. Rev. Fluid Mech. 43 (1), 661690.10.1146/annurev-fluid-122109-160638CrossRefGoogle Scholar
Theofanous, T.G. & Li, G.J. 2008 On the physics of aerobreakup. Phys. Fluids 20 (5), 052103-1– 052103-14.10.1063/1.2907989CrossRefGoogle Scholar
Varga, C.M., Lasheras, J.C. & Hopfinger, E.J. 2003 Initial breakup of a small-diameter liquid jet by a high-speed gas stream. J. Fluid Mech. 497, 405434.10.1017/S0022112003006724CrossRefGoogle Scholar
Varkevisser, T., Kooij, S., Villermaux, E. & Bonn, D. 2024 Effect of high wind speeds on droplet formation in sprays. J. Fluid Mech. 1000, A86.10.1017/jfm.2024.1042CrossRefGoogle Scholar
Wu, L., Wang, Z., Li, Q. & Zhang, J. 2015 Investigations on the droplet distributions in the atomization of kerosene jets in supersonic crossflows. Appl. Phys. Lett. 107 (10), 104103-1–104103-4.10.1063/1.4930817CrossRefGoogle Scholar
Wu, P.K., Kirkendall, K.A., Fuller, R.P. & Nejad, A.S. 1997 Breakup processes of liquid jets in subsonic crossflows. J. Propul. Power 13 (1), 6473.10.2514/2.5151CrossRefGoogle Scholar
Wu, P.K., Kirkendall, K.A., Fuller, R.P. & Nejad, A.S. 1998 Spray structures of liquid jets atomized in subsonic crossflows. J. Propul. Power 14 (2), 173182.10.2514/2.5283CrossRefGoogle Scholar
Xiao, F., Wang, Z.G., Sun, M.B., Liang, J.H. & Liu, N. 2016 Large eddy simulation of liquid jet primary breakup in supersonic air crossflow. Intl J. Multiphase Flow 87, 229240.10.1016/j.ijmultiphaseflow.2016.08.008CrossRefGoogle Scholar
Yu, S., Yin, B., Deng, W., Jia, H., Ye, Z., Xu, B. & Xu, H. 2018 Experimental study on the spray characteristics discharging from elliptical diesel nozzle at typical diesel engine conditions. Fuel 221, 2834.10.1016/j.fuel.2018.02.090CrossRefGoogle Scholar
Yu, S., Yin, B., Deng, W., Jia, H., Ye, Z., Xu, B. & Xu, H. 2019 An experimental comparison of the elliptical and circular nozzles spray and mixing characteristics under different injection pressures. Fuel 236, 14741482.10.1016/j.fuel.2018.09.118CrossRefGoogle Scholar