Hostname: page-component-76c49bb84f-887v8 Total loading time: 0 Render date: 2025-07-09T21:16:03.630Z Has data issue: false hasContentIssue false

Flow in an electrically conducting drop due to an oscillating magnetic field

Published online by Cambridge University Press:  07 July 2025

V. Kumaran*
Affiliation:
Department of Chemical Engineering, Indian Institute of Science, Bangalore 560012, India
*
Corresponding author: V. Kumaran, kumaran@iisc.ac.in

Abstract

A drop of an electrically conducting non-magnetic fluid of radius $R$, electrical conductivity $\kappa$, density $\rho _i$ and viscosity $\eta _i$ is suspended in a non-conducting medium of density $\rho _o$, viscosity $\eta _o$ and subject to an oscillating magnetic field of magnitude $H_0$ and angular frequency $\omega$. Oscillating eddy currents are induced in the drop due to Faraday’s law. The Lorentz force density, the cross product of the current density and the magnetic field, is the superposition of a steady component and an oscillating component with frequency $2 \omega$. The characteristic velocity due to the Lorentz force density is $(\mu _0 H_0^2 R/\eta _i)$ times a function of the dimensionless parameter $\beta = \sqrt {\mu _0 \kappa \omega R^2}$, the square root of the ratio of the frequency and the current relaxation rate. Here, $\mu _0$ is the magnetic permeability. The characteristic velocities for the steady and oscillatory components increase proportional to $\beta ^{4}$ for $\beta \ll 1$, and decrease proportional to $\beta ^{-1}$ for $\beta \gg 1$. The steady flow field consists of two axisymmetric eddies in the two hemispheres with flow outwards along the magnetic field axis and inwards along the equator. The flow in the drop induces a biaxial extensional flow in the surrounding medium, with compression along the magnetic axis and extension along the equatorial plane. The oscillating component of the velocity depends on $\beta$ and the Reynolds number ${Re}_\omega$ based on the frequency of oscillations. For ${Re}_\omega \gg 1$, the amplitude of the oscillatory velocity decreases proportional to ${Re}_\omega ^{-1}$ for $\beta \ll 1$, and proportional to ${Re}_\omega ^{-1/2}$ for $\beta \gg 1$.

Information

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Almog, Y. & Frankel, I. 1995 The motion of axisymmetric dipolar particles in a homogeneous shear flow. J. Fluid Mech. 289, 243261.10.1017/S0022112095001327CrossRefGoogle Scholar
Batchelor, G.K. 1970 The stress in a suspension of force-free particles. J. Fluid Mech. 41 (3), 545570.10.1017/S0022112070000745CrossRefGoogle Scholar
Bolcato, R., Etay, J., Fautrelle, Y. & Moffatt, H.K. 1993 Electromagnetic billiards. Phys. Fluids A: Fluid Dyn. 5 (7), 18521853.10.1063/1.858809CrossRefGoogle Scholar
Chaves, A., Zahn, M. & Rinaldi, C. 2008 Spin-up flow of ferrofluids: asymptotoic theory and experimental measurements. Phys. Fluids 20 (5), 053102.10.1063/1.2907221CrossRefGoogle Scholar
Das, D. & Saintillan, D. 2021 A three-dimensional small-deformation theory for electrohydrodynamics of dielectric drops. J. Fluid Mech. 914, A22.10.1017/jfm.2020.924CrossRefGoogle Scholar
Davidson, P.A. 1999 Magnetohydrodynamics in materials processing. Annu. Rev. Fluid Mech. 31 (1), 273300.10.1146/annurev.fluid.31.1.273CrossRefGoogle Scholar
Edwards, P.P., Rao, C.N.R., Kumar, N. & Alexandrov, A.S. 2006 The possibility of a liquid superconductor. ChemPhysChem 7 (9), 20152021.10.1002/cphc.200600241CrossRefGoogle Scholar
Feng, J.Q. & Scott, T.C. 1996 A computational analysis of electrohydrodynamics of a leaky dielectric drop in an electric field. J. Fluid Mech. 311 (-1), 289326.10.1017/S0022112096002601CrossRefGoogle Scholar
Happel, J. & Brenner, H. 1983 Low Reynolds number hydrodynamics. The Hague. Martinus Nijhoff Publishers.Google Scholar
Hinch, E.J. & Leal, L.G. 1979 Rotation of small non-axisymmetric particles in a simple shear flow. J. Fluid Mech. 92 (3), 591608.10.1017/S002211207900077XCrossRefGoogle Scholar
Jeffery, G.B. 1923 The motion of ellipsoidal particles immersed in a viscous fluid. Proc. R. Soc. A 123, 161179.Google Scholar
Karyappa, R.B., Deshmukh, S.D. & Thaokar, R.M. 2014 Breakup of a conducting drop in a uniform electric field. J. Fluid Mech. 754, 550589.10.1017/jfm.2014.402CrossRefGoogle Scholar
Klingenberg, D.J. 2001 Magnetorheology: applications and challenges. AIChE J. 47 (2), 246249.10.1002/aic.690470202CrossRefGoogle Scholar
Klingenberg, D.J., Ulicny, JC. & Golden, M.A. 2007 Mason numbers for magnetorheology. J. Rheol. 51 (5), 883893.10.1122/1.2764089CrossRefGoogle Scholar
Kumaran, V. 2019 Rheology of a suspension of conducting particles in a magnetic field. J. Fluid Mech. 871, 139185.10.1017/jfm.2019.295CrossRefGoogle Scholar
Kumaran, V. 2020 a Bifurcations in the dynamics of a dipolar spheroid in a shear flow subjected to an external field. Phys. Rev. Fluids 5 (3), 033701.10.1103/PhysRevFluids.5.033701CrossRefGoogle Scholar
Kumaran, V. 2020 b A suspension of conducting particles in a magnetic field - the maxwell stress. J. Fluid Mech. 901.10.1017/jfm.2020.505CrossRefGoogle Scholar
Kumaran, V. 2021 a Dynamics of polarizable spheroid in a shear flow subjected to a parallel magnetic field. Phys. Rev. Fluids 6 (4), 043702.10.1103/PhysRevFluids.6.043702CrossRefGoogle Scholar
Kumaran, V. 2021 b Steady and rotating states of a polarizable spheroid subjected to a magnetic field and a shear flow. Phys. Rev. Fluids 6 (6), 063701.10.1103/PhysRevFluids.6.063701CrossRefGoogle Scholar
Kumaran, V. 2022 The effect of inter-particle hydrodynamic and magnetic interactions in a magnetorheological fluid. J. Fluid Mech. 944, A49.10.1017/jfm.2022.518CrossRefGoogle Scholar
Kumaran, V. 2024 Eddies driven by eddy currents: magnetokinetic flow in a conducting drop due to an oscillating magnetic field. Europhys. Lett. 148 (6), 63001.10.1209/0295-5075/ad99fbCrossRefGoogle Scholar
Landau, L.D., Lifshitz, E.M. & Pitaevskii, L.P. 2014 Electrodynamics of Continuous Media. Butterworth-Heinemann.Google Scholar
Melcher, J.R. & Taylor, G.I. 1969 Electrohydrodynamics: a review of the role of interfacial shear stresses. Annu. Rev. Fluid Mech. 1 (1), 111146.10.1146/annurev.fl.01.010169.000551CrossRefGoogle Scholar
Mhatre, S., Deshmukh, S. & Thaokar, R. 2015 Electrocoalescence of a drop pair. Phys. Fluids 27 (9), 092106.10.1063/1.4931592CrossRefGoogle Scholar
Misra, I. & Kumaran, V. 2024 a Dynamics of a magnetic particle in an oscillating magnetic field. Phys. Rev. Fluids 9 (7), 074303.10.1103/PhysRevFluids.9.074303CrossRefGoogle Scholar
Misra, I. & Kumaran, V. 2024 b Dynamics of a magnetic particle in an oscillating magnetic field subject to a shear flow. J. of Fluid Mech. 988, A49.10.1017/jfm.2024.436CrossRefGoogle Scholar
Moffatt, H.K. 1978 Magnetic Field Generation in Electrically Conducting Fluids. Cambridge University Press.Google Scholar
Moffatt, H.K. 1990 On the behaviour of a suspension of conducting particles subjected to a time-periodic magnetic field. J. Fluid Mech. 218 (-1), 509529.10.1017/S0022112090001094CrossRefGoogle Scholar
Moffatt, H.K. 1991 Electromagnetic stirring. Phys. Fluids 3 (5), 13361343.10.1063/1.858062CrossRefGoogle Scholar
Moskowitz, R. & Rosensweig, R.E. 1967 Nonmechanical torque-driven flow of a ferromagnetic fluid by an electromagnetic field. Appl. Phys. Lett. 11 (10), 301303.10.1063/1.1754952CrossRefGoogle Scholar
Puyesky, I. & Frankel, I. 1998 The motion of a dipolar spherical particle in homogeneous shear and time-periodic fields. J. Fluid Mech. 369, 191216.10.1017/S0022112098001724CrossRefGoogle Scholar
Rayleigh, L. 1882 On the equilibrium of liquid conducting masses charged with electricity. Phil. Mag. 14 (87), 184186.10.1080/14786448208628425CrossRefGoogle Scholar
Rinaldi, C. & Zahn, M. 2002 Effects of spin viscosity on ferrofluid flow profiles in alternating and rotating magnetic fields. Phys. Fluids 14 (8), 28472870.10.1063/1.1485762CrossRefGoogle Scholar
Rosensweig, R.E. 2023 Spin-up flow in ferrofluids: a toy model. Eur. Phys. J. E 46 (9), 83.10.1140/epje/s10189-023-00340-4CrossRefGoogle Scholar
Rosensweig, R.E. 2000 Continuum equations for magnetic and dielectric fluids with internal rotations. J. Chem. Phys. 121 (3), 12281242.10.1063/1.1755660CrossRefGoogle Scholar
Sherman, S.G., Becnel, A.C. & Wereley, N.M. 2015 Relating Mason number to Bingham number in magnetorheological fluids. J. Magn. Magn. Mater. 380, 98104.10.1016/j.jmmm.2014.11.010CrossRefGoogle Scholar
Shvydkiy, E., Baake, E. & Koppen, D. 2020 Liquid metal flow under traveling magnetic field–solidification simulation and pulsating flow analysis. Metals 10 (4), 532.10.3390/met10040532CrossRefGoogle Scholar
Sobecki, C.A., Zhang, J., Zhang, Y. & Wang, C. 2018 Dynamics of paramagnetic and ferromagnetic ellipsoidal particles in shear flow under a uniform magnetic field. Phys. Rev. Fluids 3 (8), 084201.10.1103/PhysRevFluids.3.084201CrossRefGoogle Scholar
Squires, T.M. & Bazant, M.Z. 2004 Induced-charge electro-osmosis. J. Fluid Mech. 509, 217252.10.1017/S0022112004009309CrossRefGoogle Scholar
Stokes, V.K. 1966 Couple stresses in fluids. Phys. Fluids 9 (9), 17091715.10.1063/1.1761925CrossRefGoogle Scholar
Taylor, G.I. 1964 Disintegration of water drops in an electric field. Proc. R. Soc. Lond. A 280 (1382), 383397.Google Scholar
Taylor, G.I. 1966 Studies in electrohydrodynamics. I. The circulation produced in a drop by an electric field. Proc. R. Soc. Lond. A 291 (1425), 159166.Google Scholar
Timofeev, V.N. & Khatsayuk, M.Yu 2016 Theoretical design fundamentals for MHD stirrers for molten metals. Magnetohydrodynamics 52 (4), 495506.Google Scholar
de Vicente, J., Klingenberg, D.J. & Hidalgo-Alvarez, R. 2011 Magnetorheological fluids: a review. Soft Matter 7 (8), 37013710.10.1039/c0sm01221aCrossRefGoogle Scholar
Zaitsev, V.M. & Shliomis, M.I. 1969 Entrainment of ferromagnetic suspension by a rotating field. J. Appl. Mech. Tech. Phys. 10 (5), 696700.10.1007/BF00907424CrossRefGoogle Scholar