Hostname: page-component-5b777bbd6c-6lqsf Total loading time: 0 Render date: 2025-06-23T09:27:23.043Z Has data issue: false hasContentIssue false

Large-eddy simulation for decaying magnetohydrodynamic turbulence at low magnetic Reynolds number

Published online by Cambridge University Press:  05 June 2025

Yu-Chang Fan
Affiliation:
State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace, Xi’an Jiaotong University, Xi’an, Shannxi 710049, PR China
Long Chen
Affiliation:
School of Engineering Science, University of Chinese Academy of Sciences, Beijing 101408, PR China State Key Laboratory of Nonlinear Mechanics, Chinese Academy of Sciences, Beijing 101408, PR China
Ming-Jiu Ni*
Affiliation:
State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace, Xi’an Jiaotong University, Xi’an, Shannxi 710049, PR China School of Engineering Science, University of Chinese Academy of Sciences, Beijing 101408, PR China State Key Laboratory of Nonlinear Mechanics, Chinese Academy of Sciences, Beijing 101408, PR China
*
Corresponding author: Ming-Jiu Ni, mjni@ucas.ac.cn

Abstract

Large-eddy simulations have been conducted to investigate the decay law of homogeneous turbulence influenced by a magnetic field within a cubic domain, employing periodic boundary conditions. The initial integral Reynolds number is approximately 1000, while the initial interaction number $N$ ranges from 0.1–100. The results reveal that the Joule cone angle $\theta$, half of the Joule cone, decays as $\cos \theta \sim t^{-1/2}$ when $N \gg 1$. In the nonlinear stage, small-scale vortices gradually recover and restore three-dimensionality. Moreover, the corresponding critical state at small scales, marking the transition from quasi-two-dimensional structure to the onset of three-dimensionality, has been quantitatively defined. During the linear stage, based on the true magnetic damping number ($\tau _t = \rho / (\sigma {\boldsymbol{B}}^2 \cos ^2 \psi )$, where $\sigma$, $\boldsymbol{B}$ and $\psi$ denote the electrical conductivity, magnetic field and the angle between the wavevector and $\boldsymbol{B}$ in Fourier space, respectively), Moffatt’s decay law, $K \sim t^{-1/2}$, manifests at distinct times and zones in the Fourier space, with $K$ signifying turbulent kinetic energy. In the nonlinear stage, for $N \gg 1$, a $-3$ slope in the energy power spectrum is prominently observed over an extended period. The near-equivalence of the characteristic time scales of inertial and Lorentz forces in the inertial subrange suggests a quasiequilibrium state between energy transfer and Joule dissipation in Fourier space, thereby corroborating the hypothesis proposed by Alemany et al. 1979 Journal de Mecanique 18(2): 277–313. Additionally, it is observed that pressure mediates energy transfer from horizontal kinetic energy ($K_{\parallel }$) to vertical kinetic energy ($K_{\bot }$), accelerating the decay of $K_{\parallel }$. Notably, concurrent inverse and direct energy transfers emerge during the decay process. Our analysis reveals that the ratio $R$ of the maximum inverse to maximum direct energy flux correlates with the dimensionality of the turbulence, following the scaling law $R\sim (\cos \theta )^{-2.2}$.

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

Footnotes

These authors contributed equally to this work.

References

Alemany, A., Moreau, R., Sulem, P.L. & Frisch, U. 1979 Influence of an external magnetic field on homogeneous mhd turbulence. J. Mecanique 18 (2), 277313.Google Scholar
Baker, N.T., Pothérat, A. & Davoust, L. 2015 Dimensionality, secondary flows and helicity in low-rm mhd vortices. J. Fluid Mech. 779, 325350.10.1017/jfm.2015.420CrossRefGoogle Scholar
Baker, N.T., Pothérat, A., Davoust, L. & Debray, F. 2018 Inverse and direct energy cascades in three-dimensional magnetohydrodynamic turbulence at low magnetic reynolds number. Phys. Rev. Lett. 120 (22), 224502.10.1103/PhysRevLett.120.224502CrossRefGoogle ScholarPubMed
Burattini, P., Kinet, M., Carati, D. & Knaepen, B. 2008 Anisotropy of velocity spectra in quasistatic magnetohydrodynamic turbulence. Phys. Fluids 20 (6), 065110.10.1063/1.2940142CrossRefGoogle Scholar
Burattini, P., Zikanov, O. & Knaepen, B. 2010 Decay of magnetohydrodynamic turbulence at low magnetic Reynolds number. J. Fluid Mech. 657, 502538.10.1017/S0022112010001795CrossRefGoogle Scholar
Celani, A., Musacchio, S. & Vincenzi, D. 2010 Turbulence in more than two and less than three dimensions. Phys. Rev. Lett. 104 (18), 184506.10.1103/PhysRevLett.104.184506CrossRefGoogle ScholarPubMed
Chen, L., Pothérat, A., Ni, M.-J. & Moreau, R. 2021 Direct numerical simulation of quasi-two-dimensional MHD turbulent shear flows. J. Fluid Mech. 915, A130.10.1017/jfm.2021.103CrossRefGoogle Scholar
Dar, G., Verma, M.K. & Eswaran, V. 2001 Energy transfer in two-dimensional magnetohydrodynamic turbulence: formalism and numerical results. Physica D: Nonlinear Phenom. 157 (3), 207225.10.1016/S0167-2789(01)00307-4CrossRefGoogle Scholar
Davidson, P.A. 1995 Magnetic damping of jets and vortices. J. Fluid Mech. 299, 153186.10.1017/S0022112095003466CrossRefGoogle Scholar
Davidson, P.A. 1997 The role of angular momentum in the magnetic damping of turbulence. J. Fluid Mech. 336, 123150.10.1017/S002211209600465XCrossRefGoogle Scholar
Davidson, P.A. 2001 An Introduction to Magnetohydrodynamics. vol. 25. Cambridge University Press.10.1017/CBO9780511626333CrossRefGoogle Scholar
Davidson, P.A. 2015 Turbulence: an Introduction for Scientists and Engineers. Oxford University Press.10.1093/acprof:oso/9780198722588.001.0001CrossRefGoogle Scholar
Domaradzki, J.A. & Rogallo, R.S. 1990 Local energy transfer and nonlocal interactions in homogeneous, isotropic turbulence. Phys. Fluids A: Fluid Dyn. 2 (3), 413426.10.1063/1.857736CrossRefGoogle Scholar
Favier, B., Godeferd, F.S., Cambon, C. & Delache, A. 2010 On the two-dimensionalization of quasistatic magnetohydrodynamic turbulence. Phys. Fluids 22 (7), 075104.10.1063/1.3456725CrossRefGoogle Scholar
Germano, M., Piomelli, U., Moin, P. & Cabot, W.H. 1991 A dynamic subgrid-scale eddy viscosity model. Phys. Fluids A: Fluid Dyn. 3 (7), 17601765.10.1063/1.857955CrossRefGoogle Scholar
Hunt, J.C.R., Wray, A.A. & Moin, P. 1988 Eddies, streams, and convergence zones in turbulent flows. Studying turbulence using numerical simulation databases, 2. Proceedings of the 1988 summer program.Google Scholar
Klein, R. & Pothérat, A. 2010 Appearance of three dimensionality in wall-bounded MHD flows. Phys. Rev. Lett. 104 (3), 034502.10.1103/PhysRevLett.104.034502CrossRefGoogle ScholarPubMed
Knaepen, B., Kassinos, S. & Carati, D. 2004 Magnetohydrodynamic turbulence at moderate magnetic Reynolds number. J. Fluid Mech. 513, 199220.10.1017/S0022112004000023CrossRefGoogle Scholar
Knaepen, B. & Moin, P. 2004 Large-eddy simulation of conductive flows at low magnetic Reynolds number. Phys. Fluids 16 (5), 12551261.10.1063/1.1651484CrossRefGoogle Scholar
Knaepen, B. & Moreau, R. 2008 Magnetohydrodynamic turbulence at low magnetic Reynolds number. Annu. Rev. Fluid Mech. 40 (1), 2545.10.1146/annurev.fluid.39.050905.110231CrossRefGoogle Scholar
Kolesnikov, Yu B. & Tsinober, A.B. 1974 Experimental investigation of two-dimensional turbulence behind a grid. Fluid Dyn. 9 (4), 621624.10.1007/BF01031323CrossRefGoogle Scholar
Krasnov, D., Zikanov, O. & Boeck, T. 2012 Numerical study of magnetohydrodynamic duct flow at high Reynolds and Hartmann numbers. J. Fluid Mech. 704, 421446.10.1017/jfm.2012.256CrossRefGoogle Scholar
Lilly, D.K. 1992 A proposed modification of the Germano subgrid-scale closure method. Phys. Fluids A: Fluid Dyn. 4 (3), 633635.10.1063/1.858280CrossRefGoogle Scholar
Moffatt, H.K. 1967 On the suppression of turbulence by a uniform magnetic field. J. Fluid Mech. 28 (3), 571592.10.1017/S0022112067002307CrossRefGoogle Scholar
Moreau, R.J. 1990 Magnetohydrodynamics. vol.3, Springer Science & Business Media.10.1007/978-94-015-7883-7CrossRefGoogle Scholar
Ni, Ming-Jiu, Munipalli, Ramakanth, Huang, Peter, Morley, Neil B. & Abdou, Mohamed A. 2007 A current density conservative scheme for incompressible MHD flows at a low magnetic Reynolds number. Part II: on an arbitrary collocated mesh. J. Comput. Phys. 227 (1), 205228.10.1016/j.jcp.2007.07.023CrossRefGoogle Scholar
Nihoul, J.C.J. 1966 Asymptotic law of decay of homogeneous magnetoturbulence. Phys. Fluids 9 (12), 23702376.10.1063/1.1761628CrossRefGoogle Scholar
Okamoto, N., Davidson, P.A. & Kaneda, Y. 2010 On the decay of low-magnetic-Reynolds-number turbulence in an imposed magnetic field. J. Fluid Mech. 651, 295318.10.1017/S0022112009994137CrossRefGoogle Scholar
Pope, S.B. 2001 Turbulent flows. Meas. Sci. Technol. 12 (11), 20202021.10.1088/0957-0233/12/11/705CrossRefGoogle Scholar
Pothérat, A. & Klein, R. 2014 Why, how and when MHD turbulence at low becomes three-dimensional. J. Fluid Mech. 761, 168205.10.1017/jfm.2014.620CrossRefGoogle Scholar
Pothérat, A. & Kornet, K. 2015 The decay of wall-bounded MHD turbulence at low Rm . J. Fluid Mech. 783, 605636.10.1017/jfm.2015.572CrossRefGoogle Scholar
Reddy, K.S., Kumar, R. & Verma, M.K. 2014 Anisotropic energy transfers in quasi-static magnetohydrodynamic turbulence. Phys. Plasmas 21 (10), 102310.10.1063/1.4899202CrossRefGoogle Scholar
Reddy, K.S. & Verma, M.K. 2014 Strong anisotropy in quasi-static magnetohydrodynamic turbulence for high interaction parameters. Phys. Fluids 26 (2), 025109.10.1063/1.4864654CrossRefGoogle Scholar
Roberts, P.H. 1967 An introduction to magnetohydrodynamics, vol. 6, Longmans London. Google Scholar
Schumann, U. 1976 Numerical simulation of the transition from three-to two-dimensional turbulence under a uniform magnetic field. J. Fluid Mech. 74 (1), 3158.10.1017/S0022112076001675CrossRefGoogle Scholar
Sommeria, J. & Moreau, R. 1982 Why, how, and when, MHD turbulence becomes two-dimensional. J. Fluid Mech. 118 (-1), 507518.10.1017/S0022112082001177CrossRefGoogle Scholar
Sreenivasan, B. & Alboussière, T. 2000 Evolution of a vortex in a magnetic field. Eur. J. Mech.-B/Fluids 19 (3), 403421.10.1016/S0997-7546(00)00118-7CrossRefGoogle Scholar
Sreenivasan, B. & Alboussiere, T. 2002 Experimental study of a vortex in a magnetic field. J. Fluid Mech. 464, 287309.10.1017/S0022112002008959CrossRefGoogle Scholar
Teaca, B., Verma, M.K., Knaepen, B. & Carati, D. 2009 Energy transfer in anisotropic magnetohydrodynamic turbulence. Phys. Rev. E–Stat. Nonlinear Soft Matter Phys. 79 (4), 046312.10.1103/PhysRevE.79.046312CrossRefGoogle ScholarPubMed
Verma, M.K. 2017 Anisotropy in quasi-static magnetohydrodynamic turbulence. Rep. Prog. Phys. 80 (8), 087001.10.1088/1361-6633/aa6c82CrossRefGoogle ScholarPubMed
Verma, M.K. & Reddy, K.S. 2015 Modeling quasi-static magnetohydrodynamic turbulence with variable energy flux. Phys. Fluids 27 (2), 025114.10.1063/1.4913499CrossRefGoogle Scholar
Vorobev, A., Zikanov, O., Davidson, P.A. & Knaepen, B. 2005 Anisotropy of magnetohydrodynamic turbulence at low magnetic Reynolds number. Phys. Fluids 17 (12), 125105.10.1063/1.2140847CrossRefGoogle Scholar
Wang, H. & George, W.K. 2002 The integral scale in homogeneous isotropic turbulence. J. Fluid Mech. 459, 429443.10.1017/S002211200200811XCrossRefGoogle Scholar
Wang, Z.-B., Chen, L., Cao, Y.-W., Ke, C.-X., Yang, J.-C. & Ni, M.-J. 2023 Free evolution vortex in a magnetic field. Phys. Rev. Fluids 8 (8), 083703.10.1103/PhysRevFluids.8.083703CrossRefGoogle Scholar
Xia, H., Byrne, D., Falkovich, G. & Shats, M. 2011 Upscale energy transfer in thick turbulent fluid layers. Nat. Phys. 7 (4), 321324.10.1038/nphys1910CrossRefGoogle Scholar
Zikanov, O., Krasnov, D., Boeck, T. & Sukoriansky, S. 2019 Decay of turbulence in a liquid metal duct flow with transverse magnetic field. J. Fluid Mech. 867, 661690.10.1017/jfm.2019.171CrossRefGoogle Scholar
Zikanov, O. & Thess, A. 1998 Direct numerical simulation of forced MHD turbulence at low magnetic Reynolds number. J. Fluid Mech. 358, 299333.10.1017/S0022112097008239CrossRefGoogle Scholar