Hostname: page-component-cb9f654ff-9knnw Total loading time: 0 Render date: 2025-09-08T21:58:42.329Z Has data issue: false hasContentIssue false

Magnetohydrodynamic mixed convection in a vertical rectangular duct with all walls of arbitrary conductivity

Published online by Cambridge University Press:  08 September 2025

Xuan Zheng
Affiliation:
School of Engineering Science, University of Chinese Academy of Sciences, Beijing 101408, PR China
Long Chen
Affiliation:
School of Engineering Science, University of Chinese Academy of Sciences, Beijing 101408, PR China State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics and University of Chinese Academy of Sciences, Beijing 101408, PR China
Ming-Jiu Ni*
Affiliation:
School of Engineering Science, University of Chinese Academy of Sciences, Beijing 101408, PR China State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics and University of Chinese Academy of Sciences, Beijing 101408, PR China
*
Corresponding author: Ming-Jiu Ni, mjni@ucas.ac.cn

Abstract

The magnetohydrodynamic (MHD) mixed convection in a rectangular cross-section of a long vertical duct is considered. The surrounding walls of the duct can be considered for a wide range of scenarios in this analytical solution, such as arbitrary conductivity, thickness and asymmetry. Analytical solutions are also obtained for various of the governing parameters: Grashof number ($\mathop {\textit{Gr}}\nolimits$), Reynolds number ($Re$), and Hartmann number ($\mathop {\textit{Ha}}\nolimits$). Three convection states under varying ${{\mathop {\textit{Gr}}\nolimits }}/{{\mathop {\textit{Re}}\nolimits }}$ – forced convection, mixed convection and buoyancy-dominated convection – are investigated. When $ {{\mathop {\textit{Gr}}\nolimits }}/{{\mathop {\textit{Re}}\nolimits }}$ increases to a critical value $( {{\mathop {\textit{Gr}}\nolimits }}/{{\mathop {\textit{Re}}\nolimits }})_c$, a reverse flow is observed and $({{\mathop {\textit{Gr}}\nolimits }}/{{\mathop {\textit{Re}}\nolimits }})_c$ is identified for both insulated and electrically conducting ducts. In MHD mixed convection, where $ ({{\mathop {\textit{Gr}}\nolimits }}/{{\mathop {\textit{Re}}\nolimits }}) \sim 1$, the fully developed flow exhibits a steady velocity gradient in the core, scaling as $\sim ({{\mathop {\textit{Gr}}\nolimits }})/({2{\mathop {\textit{Ha}}\nolimits }{\mathop {\textit{Re}}\nolimits }})$ (Tagawa et al. 2002 Eur. J. Mech. B/Fluids 21, 383–398) in the insulated scenario, and this work extends it to the electrically conducting scenario, scaling as $\sim ({{\mathop {\textit{Gr}}\nolimits }})/({2{\mathop {\textit{Re}}\nolimits }{\mathop {\textit{Ha}}\nolimits }(1 + c{\mathop {\textit{Ha}}\nolimits })})$, where $c$ denotes the wall conductance ratio, accompanied by asymmetrical velocity jets. Effects of conductive walls on both pressure drop and flow distribution are thoroughly analysed. The pressure gradient distribution as a function of $\mathop {\textit{Ha}}\nolimits$ is given, in which the combined effect of arbitrary sidewalls and Hartmann walls on the distributions is well illustrated. The wall asymmetry has profound effects on the velocity distribution, especially for the high-velocity jet areas where Hartmann walls exert an opposite effect to that of sidewalls. The velocity magnitude is significantly larger around lower conducting sidewalls and raises questions about new potential instability schemes for high $\mathop {\textit{Re}}\nolimits$, as discussed in previous studies (Krasnov et al. 2016 Numerical simulations of MHD flow transition…; Kinet et al. 2009 Phys. Rev. Lett. 103, 154501).

Information

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

Footnotes

Xuan Zheng and Long Chen contributed equally to this work.

References

Abdou, M., Morley, N.B., Smolentsev, S., Ying, A., Malang, S., Rowcliffe, A. & Ulrickson, M. 2015 Blanket/first wall challenges and required R&D on the pathway to DEMO. Fusion Engng Des. 100, 243.10.1016/j.fusengdes.2015.07.021CrossRefGoogle Scholar
Abdou, M.A. 1996 Results of an international study on a high-volume plasma-based neutron source for fusion blanket development. Fusion Technol. 29 (1), 157.10.13182/FST96-3CrossRefGoogle Scholar
Akhtari, A., Zikanov, O. & Krasnov, D. 2024 Magnetoconvection in a long vertical enclosure with walls of finite electrical conductivity. Intl J. Therm. Sci. 204, 109241.10.1016/j.ijthermalsci.2024.109241CrossRefGoogle Scholar
Aleksandrova, S. & Molokov, S. 2004 Three-dimensional buoyant convection in a rectangular cavity with differentially heated walls in a strong magnetic field. Fluid Dyn. Res. 35 (1), 37.10.1016/j.fluiddyn.2004.04.002CrossRefGoogle Scholar
Bluck, M.J. & Wolfendale, M.J. 2015 An analytical solution to electromagnetically coupled duct flow in MHD. J. Fluid Mech. 771, 595623.10.1017/jfm.2015.202CrossRefGoogle Scholar
Bühler, L. 1998 Laminar buoyant magnetohydrodynamic flow in vertical rectangular ducts. Phys. Fluids 10 (1), 223236.10.1063/1.869562CrossRefGoogle Scholar
Chen, L., Smolentsev, S. & Ni, M.-J. 2020 Toward full simulations for a liquid metal blanket: MHD flow computations for a PbLi blanket prototype at Ha ∼ 10 4 . Nucl. Fusion 60 (7), 076003.10.1088/1741-4326/ab8b30CrossRefGoogle Scholar
Crapper, P.F. & Baines, W.D. 1977 Non Boussinesq forced plumes. Atmos. Environ. 11 (5), 415420, 1967.10.1016/0004-6981(77)90002-6CrossRefGoogle Scholar
De Les Valls, E.M., Sedano, L.A., Batet, L., Ricapito, I., Aiello, A., Gastaldi, O. & Gabriel, F. 2008 Lead–lithium eutectic material database for nuclear fusion technology. J. Nucl. Mater. 376 (3), 353357.10.1016/j.jnucmat.2008.02.016CrossRefGoogle Scholar
Hunt, J.C.R. 1965 Magnetohydrodynamic flow in rectangular ducts. J. Fluid Mech. 21 (4), 577590.10.1017/S0022112065000344CrossRefGoogle Scholar
Kinet, M., Knaepen, B. & Molokov, S. 2009 Instabilities and transition in magnetohydrodynamic flows in ducts with electrically conducting walls. Phys. Rev. Lett. 103 (15), 154501.10.1103/PhysRevLett.103.154501CrossRefGoogle ScholarPubMed
Krasnov, D., Boeck, T., Braiden, L., Molokov, S. & Bühler, L. 2016 Numerical simulations of MHD flow transition in ducts with conducting Hartmann walls: Limtech Project A3 D4 (TUI), vol. 7713. KIT Scientific Publishing.Google Scholar
Müller, U. & Bühler, L. 2001 Analytical solutions for MHD channel flow. In Magnetofluiddynamics in Channels and Containers, pp. 3755. Springer-Verlag Berlin Heidelberg New York.10.1007/978-3-662-04405-6_4CrossRefGoogle Scholar
Ni, M.-J., Munipalli, R., Huang, P., Morley, N.B. & Abdou, M.A. 2007 a A current density conservative scheme for incompressible mhd flows at a low magnetic reynolds number. Part II: on an arbitrary collocated mesh. J. Comput. Phys. 227 (1), 205228.10.1016/j.jcp.2007.07.023CrossRefGoogle Scholar
Ni, M.-J., Munipalli, R., Morley, N.B., Huang, P. & Abdou, M.A. 2007 b A current density conservative scheme for incompressible mhd flows at a low magnetic Reynolds number. Part I: On a rectangular collocated grid system. J. Comput. Phys. 227 (1), 174204.10.1016/j.jcp.2007.07.025CrossRefGoogle Scholar
Prasad, K.V., Vaidya, H. & Vajravelu, K. 2015 MHD mixed convection heat transfer in a vertical channel with temperature-dependent transport properties. J. Appl. Fluid Mech. 8 (4), 693701.Google Scholar
Prasad, K.V., Vajravelu, K. & Datti, P.S. 2010 Mixed convection heat transfer over a non-linear stretching surface with variable fluid properties. Intl J. Nonlinear Mech. 45 (3), 320330.10.1016/j.ijnonlinmec.2009.12.003CrossRefGoogle Scholar
Rhodes, T.J., Pulugundla, G., Smolentsev, S. & Abdou, M. 2020 3D modelling of MHD mixed convection flow in a vertical duct with transverse magnetic field and volumetric or surface heating. Fusion Engng Des. 160, 111834.10.1016/j.fusengdes.2020.111834CrossRefGoogle Scholar
Shercliff, J.A. 1953 Steady motion of conducting fluids in pipes under transverse magnetic fields. In Mathematical Proceedings of the Cambridge Philosophical Society, vol. 49, pp. 136144. Cambridge University Press.10.1017/S0305004100028139CrossRefGoogle Scholar
Tagawa, T., Authié, G. & Moreau, R. 2002 Buoyant flow in long vertical enclosures in the presence of a strong horizontal magnetic field. Part 1. Fully-established flow. Eur. J. Mech. B/Fluids 21 (4), 383398.10.1016/S0997-7546(02)01182-2CrossRefGoogle Scholar
Tao, Z. & Ni, M.J. 2015 Analytical solutions for mhd flow at a rectangular duct with unsymmetrical walls of arbitrary conductivity. Sci. China Phys. Mech. Astron. 58, 118.10.1007/s11433-014-5518-xCrossRefGoogle Scholar
Tassone, A., Siriano, S., Caruso, G., Utili, M. & Del Nevo, A. 2020 MHD pressure drop estimate for the WCLL in-magnet PbLi loop. Fusion Engng Des. 160, 111830.10.1016/j.fusengdes.2020.111830CrossRefGoogle Scholar
Walker, J.S., Ludford, G.S.S. & Hunt, J.C.R. 1971 Three-dimensional MHD duct flows with strong transverse magnetic fields. Part 2. Variable-area rectangular ducts with conducting sides. J. Fluid Mech. 46 (4), 657684.10.1017/S0022112071000776CrossRefGoogle Scholar
Walker, J.S., Ludford, G.S.S. & Hunt, J.C.R. 1972 Three-dimensional MHD duct flows with strong transverse magnetic fields. Part 3. Variable-area rectangular ducts with insulating walls. J. Fluid Mech. 56 (1), 121141.10.1017/S0022112072002228CrossRefGoogle Scholar
Williams, W.E. 1963 Magnetohydrodynamic flow in a rectangular tube at high Hartmann number. J. Fluid Mech. 16 (2), 262268.10.1017/S0022112063000732CrossRefGoogle Scholar
Zhang, X. & Zikanov, O. 2014 Mixed convection in a horizontal duct with bottom heating and strong transverse magnetic field. J. Fluid Mech. 757, 3356.10.1017/jfm.2014.473CrossRefGoogle Scholar
Zikanov, O., Belyaev, I., Listratov, Y., Frick, P., Razuvanov, N. & Sviridov, V. 2021 Mixed convection in pipe and duct flows with strong magnetic fields. Appl. Mech. Rev. 73 (1), 010801.10.1115/1.4049833CrossRefGoogle Scholar
Zikanov, O., Listratov, Y.I. & Sviridov, V.G. 2013 Natural convection in horizontal pipe flow with a strong transverse magnetic field. J. Fluid Mech. 720, 486516.10.1017/jfm.2013.45CrossRefGoogle Scholar