Hostname: page-component-5b777bbd6c-rbv74 Total loading time: 0 Render date: 2025-06-23T04:14:32.796Z Has data issue: false hasContentIssue false

Mass and momentum transfer at fluid–porous interfaces: jump boundary conditions for non-parallel flows

Published online by Cambridge University Press:  04 June 2025

Christian Ruyer-Quil*
Affiliation:
Université Savoie Mont Blanc, CNRS, LOCIE, Chambéry 73000, France
Sanghasri Mukhopadhyay
Affiliation:
Centre for Applied Sciences (CAS), International Institute of Information Technology Bangalore (IIITB), Bengaluru, Karnataka 560100, India
R. Usha
Affiliation:
Department of Mathematics, IIT Madras, Chennai 600036, Tamil Nadu, India
*
Corresponding author: Christian Ruyer-Quil, Christian.Ruyer-Quil@univ-smb.fr

Abstract

We derive boundary conditions for two-dimensional parallel and non-parallel flows at the interface of a homogeneous and isotropic porous medium and an overlying fluid layer by solving a macroscopic closure problem based on the asymptotic solution to the generalised transport equations (GTE) in the interfacial region. We obtained jump boundary conditions at the effective sharp surface dividing the homogeneous fluid and porous layers for either the Darcy or the Darcy–Brinkman equations. We discuss the choice of the location of the dividing surface and propose choices which reduce the distance with the GTE solutions. We propose an ad hoc expression of the permeability distribution within the interfacial region which enables us to preserve the invariance of the fluid-side-averaged velocity profile with respect to the radius $r_0$ of the averaging volume. Solutions to the GTE, equipped with the proposed permeability distribution, compare favourably with the averaged solutions to the pore-scale simulations when the interfacial thickness $\delta$ is adjusted to $r_0$. Numerical tests for parallel and non-parallel flows using the obtained jump boundary conditions or the generalised transport equations show quantitative agreement with the GTE solutions, with experiments and pore-scale simulations. The proposed model of mass and momentum transport is predictive, requiring solely information on the bulk porosity and permeability and the location of the solid matrix of the porous medium. Our results suggest that the Brinkman corrections may be avoided if the ratio $a=\delta /\delta _B$ of the thickness $\delta$ of the interfacial region to the Brinkman penetration depth $\delta _B$ is large enough, as the Brinkman sub-layer is entirely contained within the interfacial region in that case. Our formulation has been extended to anisotropic porous media and can be easily dealt with for three-dimensional configurations.

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Aguilar-Madera, C.G., Valdés-Parada, F.J., Goyeau, B.E. & Ochoa-Tapia, J.A. 2011 Convective heat transfer in a channel partially filled with a porous medium. Intl J. Therm. Sci. 50 (8), 13551368.10.1016/j.ijthermalsci.2011.03.005CrossRefGoogle Scholar
Ahmed, E.N. & Bottaro, A. 2024 Laminar flow in a channel bounded by porous/rough walls: Revisiting Beavers–Joseph–Saffman. Eur. J. Mech. B/Fluids 103, 269283.10.1016/j.euromechflu.2023.10.012CrossRefGoogle Scholar
Alazmi, B. & Vafai, K. 2001 Analysis of fluid flow and heat transfer interfacial conditions between a porous medium and a fluid layer. Intl J. Heat Mass Transfer 44 (9), 17351749.10.1016/S0017-9310(00)00217-9CrossRefGoogle Scholar
Angot, P., Goyeau, B.E. & Ochoa-Tapia, J.A. 2017 Asymptotic modeling of transport phenomena at the interface between a fluid and a porous layer: jump conditions. Phys. Rev. E 95 (6), 063302.10.1103/PhysRevE.95.063302CrossRefGoogle Scholar
Angot, P., Goyeau, B.E. & Ochoa-Tapia, J.A. 2021 A nonlinear asymptotic model for the inertial flow at a fluid-porous interface. Adv. Water Resour. 149, 103798.10.1016/j.advwatres.2020.103798CrossRefGoogle Scholar
Auriault, J.-L., Boutin, C. & Geindreau, C. 2009 Homogenization by Multiple Scale Asymptotic Expansions. chap. 3, John Wiley & Sons, Ltd.10.1002/9780470612033.ch3CrossRefGoogle Scholar
Beavers, G.S. & Joseph, D.D. 1967 Boundary conditions at a naturally permeable wall. J. Fluid Mech. 30 (1), 197207.10.1017/S0022112067001375CrossRefGoogle Scholar
Bottaro, A. 2019 Flow over natural or engineered surfaces: an adjoint homogenization perspective. J. Fluid Mech. 877, P1.10.1017/jfm.2019.607CrossRefGoogle Scholar
Bottaro, A. & Naqvi, S.B. 2020 Effective boundary conditions at a rough wall: a high-order homogenization approach. Meccanica 55 (9), 17811800.10.1007/s11012-020-01205-2CrossRefGoogle Scholar
Caltagirone, J.-P. & Arquis, E. 1986 Recirculating flow in porous media, 302, 843846.Google Scholar
Chandesris, M. & Jamet, D. 2006 Boundary conditions at a planar fluid–porous interface for a Poiseuille flow. Intl J. Heat Mass Transfer 49 (13), 21372150.10.1016/j.ijheatmasstransfer.2005.12.010CrossRefGoogle Scholar
Chandesris, M. & Jamet, D. 2009 Jump conditions and surface-excess quantities at a fluid/Porous interface: a multi-scale approach. Trans. Porous Med. 78 (3), 419438.10.1007/s11242-008-9302-0CrossRefGoogle Scholar
Doedel, E.J., Champneys, A.R., Fairgrieve, T.F., Kuznetsov, Y.A., Sandstede, B. & Wang, X. 2008 AUTO07P: Continuation and bifurcation software for ordinary differential equations (with HomCont).Google Scholar
Gavrilov, K., Accary, G., Morvan, D., Lyubimov, D., Méradji, S. & Bessonov, O. 2011 Numerical simulation of coherent structures over plant canopy. Flow Turbul. Combust. 86 (1), 89111.10.1007/s10494-010-9294-zCrossRefGoogle Scholar
Goharzadeh, A., Khalili, A. & Jørgensen, B.B. 2005 Transition layer thickness at a fluid-porous interface. Phys. Fluids 17 (5), 057102.10.1063/1.1894796CrossRefGoogle Scholar
Goyeau, B., Lhuillier, D., Gobin, D. & Velarde, M.G. 2003 Momentum transport at a fluid–porous interface. Intl J. Heat Mass Transfer 46 (21), 40714081.10.1016/S0017-9310(03)00241-2CrossRefGoogle Scholar
Hernandez-Rodriguez, R., Angot, P., Goyeau, B. & Ochoa-Tapia, J.A. 2022 Momentum transport in the free fluid-porous medium transition layer: one-domain approach. Chem. Engng Sci. 248, 117111.10.1016/j.ces.2021.117111CrossRefGoogle Scholar
Hernandez-Rodriguez, R., Goyeau, B., Angot, P. & Ochoa-Tapia, J.A. 2020 Average velocity profile between a fluid layer and a porous medium: Brinkman boundary layer. Revista Mexicana de Ingeniería Química 19 (s1), 495520.10.24275/rmiq/Fen843CrossRefGoogle Scholar
Hou, J.S., Holmes, M.H., Lai, W.M. & Mow, V.C. 1989 Boundary conditions at the cartilage-synovial fluid interface for joint lubrication and theoretical verifications. J. Biomech. Engng 111 (1), 7887.10.1115/1.3168343CrossRefGoogle ScholarPubMed
Jäger, W. & Mikelić, A. 2009 Modeling effective interface laws for transport phenomena between an unconfined fluid and a porous medium using homogenization. Trans. Porous Med. 78 (3), 489508.10.1007/s11242-009-9354-9CrossRefGoogle Scholar
Lācis, U. & Bagheri, S. 2017 A framework for computing effective boundary conditions at the interface between free fluid and a porous medium. J. Fluid Mech. 812, 866889.10.1017/jfm.2016.838CrossRefGoogle Scholar
Lācis, U., Sudhakar, Y., Pasche, S. & Bagheri, S. 2020 Transfer of mass and momentum at rough and porous surfaces. J. Fluid Mech. 884, A21.10.1017/jfm.2019.897CrossRefGoogle Scholar
Lesueur, M., Guével, A. & Poulet, T. 2022 Reconciling asymmetry observations in the permeability tensor of digital rocks with symmetry expectations. Adv. Water Resour. 170, 104334.10.1016/j.advwatres.2022.104334CrossRefGoogle Scholar
Levy, T. & Sanchez-Palencia, E. 1975 On boundary conditions for fluid flow in porous media. Intl J. Engng Sci. 13 (11), 923940.10.1016/0020-7225(75)90054-3CrossRefGoogle Scholar
Lyubimova, T., Lepikhin, A., Parshakova, Y. & Tiunov, A. 2016 The risk of river pollution due to washout from contaminated floodplain water bodies during periods of high magnitude floods. J. Hydrol. 534, 579589.10.1016/j.jhydrol.2016.01.030CrossRefGoogle Scholar
Morad, M.R. & Khalili, A. 2009 Transition layer thickness in a fluid-porous medium of multi-sized spherical beads. Exp Fluids 46 (2), 323330.10.1007/s00348-008-0562-9CrossRefGoogle Scholar
Naqvi, S.B. & Bottaro, A. 2021 Interfacial conditions between a free-fluid region and a porous medium. Intl J. Multiphase Flow 141, 103585.10.1016/j.ijmultiphaseflow.2021.103585CrossRefGoogle Scholar
Ochoa-Tapia, J.A. & Whitaker, S. 1995 Momentum transfer at the boundary between a porous medium and a homogeneous fluid—I. Theoretical development. Intl J. Heat Mass Transfer 38 (14), 26352646.10.1016/0017-9310(94)00346-WCrossRefGoogle Scholar
Schlichting, H. & Gersten, K. 2001 Boundary-Layer Theory. Springer.Google Scholar
Sudhakar, Y., Lācis, U., Pasche, S. & Bagheri, S. 2021 Higher-order homogenized boundary conditions for flows over rough and porous surfaces. Trans. Porous Med. 136 (1), 142.10.1007/s11242-020-01495-wCrossRefGoogle Scholar
Terzis, A., Zarikos, I., Weishaupt, K., Yang, G., Chu, X., Helmig, R. & Weigand, B. 2019 Microscopic velocity field measurements inside a regular porous medium adjacent to a low Reynolds number channel flow. Phys. Fluids 31 (4), 042001.10.1063/1.5092169CrossRefGoogle Scholar
Valdés-Parada, F.J., Aguilar-Madera, C.G., Ochoa-Tapia, J.A. & Goyeau, B.E. 2013 Velocity and stress jump conditions between a porous medium and a fluid. Adv. Water Resour. 62, 327339.10.1016/j.advwatres.2013.08.008CrossRefGoogle Scholar
Valdés-Parada, F.J., Alberto Ochoa-Tapia, J. & Alvarez-Ramirez, J. 2007 a Diffusive mass transport in the fluid–porous medium inter-region: closure problem solution for the one-domain approach. Chem. Engng Sci. 62 (21), 60546068.10.1016/j.ces.2007.06.012CrossRefGoogle Scholar
Valdés-Parada, F.J., Goyeau, B. & Ochoa-Tapia, J.A. 2007 b Jump momentum boundary condition at a fluid–porous dividing surface: derivation of the closure problem. Chem. Engng Sci. 62 (15), 40254039.10.1016/j.ces.2007.04.042CrossRefGoogle Scholar
Valdés-Parada, F.J. & Lasseux, D. 2021 Flow near porous media boundaries including inertia and slip: a one-domain approach. Phys. Fluids 33 (7), 073612.10.1063/5.0056345CrossRefGoogle Scholar
Valdés-Parada, F.J., Goyeau, B. & Alberto Ochoa-Tapia, J. 2006 Diffusive mass transfer between a microporous medium and an homogeneous fluid: jump boundary conditions. Chem. Engng Sci. 61 (5), 16921704.10.1016/j.ces.2005.10.005CrossRefGoogle Scholar
Wood, B.D., Quintard, M. & Whitaker, S. 2000 Jump conditions at non-uniform boundaries: the catalytic surface. Chem. Engng Sci. 55 (22), 52315245.10.1016/S0009-2509(00)00161-5CrossRefGoogle Scholar
Zampogna, G.A., Magnaudet, J. & Bottaro, A. 2019 Generalized slip condition over rough surfaces. J. Fluid Mech. 858, 407436.10.1017/jfm.2018.780CrossRefGoogle Scholar