Hostname: page-component-5b777bbd6c-skqgd Total loading time: 0 Render date: 2025-06-23T06:16:42.031Z Has data issue: false hasContentIssue false

A nonlinear Schrödinger equation for capillary waves on arbitrary depth with constant vorticity

Published online by Cambridge University Press:  09 June 2025

Christian Kharif*
Affiliation:
Aix-Marseille Université, Institut de Recherche sur les Phénomènes Hors Equilibre, UMR 7342, CNRS, Centrale Méditerranée, Marseille 13384, France
Malek Abid
Affiliation:
Aix-Marseille Université, Institut de Recherche sur les Phénomènes Hors Equilibre, UMR 7342, CNRS, Centrale Méditerranée, Marseille 13384, France
Yang-Yih Chen
Affiliation:
Department of Marine Environment and Engineering, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
Hung-Chu Hsu
Affiliation:
Department of Marine Environment and Engineering, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
*
Corresponding author: Christian Kharif, kharif@irphe.univ-mrs.fr

Abstract

A nonlinear Schrödinger equation for pure capillary waves propagating at the free surface of a vertically sheared current has been used to study the stability and bifurcation of capillary Stokes waves on arbitrary depth. A linear stability analysis of weakly nonlinear capillary Stokes waves on arbitrary depth has shown that (i) the growth rate of modulational instability increases as the vorticity decreases whatever the dispersive parameter $kh$, where $k$ is the carrier wavenumber and $h$ the depth; (ii) the growth rate is significantly amplified for shallow water depths; and (iii) the instability bandwidth widens as the vorticity decreases. Particular attention has been paid to damping due to viscosity and forcing effects on modulational instability. In addition, a linear stability analysis to transverse perturbations in deep water has been carried out, demonstrating that the dominant modulational instability is two-dimensional whatever the vorticity. Near the minimum of linear phase velocity in deep water, we have shown that generalised capillary solitary waves bifurcate from linear capillary Stokes waves when the vorticity is positive. Moreover, we have shown that the envelope of pure capillary waves in deep water is unstable to transverse perturbations. Consequently, deep-water generalised capillary solitary waves are expected to be unstable to transverse perturbations.

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Abid, M., Kharif, C., Hsu, H.-C. & Chen, Y.-Y. 2019 Transverse instability of gravity–capillary solitary waves on deep water in the presence of constant vorticity. J. Fluid Mech. 871, 10281043.10.1017/jfm.2019.350CrossRefGoogle Scholar
Akylas, T.R. 1993 Envelope solitons with stationary crests. Phys. Fluids A: Fluid Dyn. 5 (4), 789791.10.1063/1.858626CrossRefGoogle Scholar
Chen, B. & Saffman, P.G. 1985 Three-dimensional stability and bifurcation of capillary and gravity waves on deep water. Stud. Appl. Maths 72 (2), 125147.10.1002/sapm1985722125CrossRefGoogle Scholar
Constantin, A. & Kartashova, E. 2009 Effect of non-zero constant vorticity on the nonlinear resonances of capillary water waves. Europhys. Lett. 86 (2), 29001.10.1209/0295-5075/86/29001CrossRefGoogle Scholar
Crapper, G.D. 1957 An exact solution for progressive capillary waves of arbitrary amplitude. J. Fluid Mech. 2 (6), 532540.10.1017/S0022112057000348CrossRefGoogle Scholar
Dhar, A.K. & Kirby, J.T. 2023 Fourth-order stability analysis for capillary-gravity waves on finite-depth currents with constant vorticity. Phys. Fluids 35 (2), 026601.10.1063/5.0136002CrossRefGoogle Scholar
Dias, F., Dyachenko, A.I. & Zakharov, V.E. 2008 Theory of weakly damped free-surface flows: a new formulation based on potential flow solutions. Phys. Lett. A 372 (8), 12971302.10.1016/j.physleta.2007.09.027CrossRefGoogle Scholar
Dias, F. & Kharif, C. 1999 Nonlinear gravity and capillary-gravity waves. Annu. Rev. Fluid Mech. 31 (1), 301346.10.1146/annurev.fluid.31.1.301CrossRefGoogle Scholar
Djordjevic, V.D. & Redekopp, L.G. 1977 On two-dimensional packets of capillary-gravity waves. J. Fluid Mech. 79 (4), 703714.10.1017/S0022112077000408CrossRefGoogle Scholar
Ellingsen, S.Å. 2014 Initial surface disturbance on a shear current: the Cauchy–Poisson problem with a twist. Phys. Fluids 26 (8), 082104.10.1063/1.4891640CrossRefGoogle Scholar
Ellingsen, S.A. 2016 Oblique waves on a vertically sheared current are rotational. Eur. J. Mech. B/Fluids 56, 156160.10.1016/j.euromechflu.2015.11.002CrossRefGoogle Scholar
Hogan, S.J. 1985 The fourth-order evolution equation for deep-water gravity-capillary waves. Proc. R. Soc. Lond. A. Math. Phys. Sci. 402 (1823), 359372.Google Scholar
Hogan, S.J. 1988 The superharmonic normal mode instabilities of nonlinear deep-water capillary waves. J. Fluid Mech. 190, 165177.10.1017/S0022112088001260CrossRefGoogle Scholar
Hsu, H.C., Kharif, C., Abid, M. & Chen, Y.Y. 2018 A nonlinear schrödinger equation for gravity-capillary water waves on arbitrary depth with constant vorticity. part 1. J. Fluid Mech. 854, 146163.10.1017/jfm.2018.627CrossRefGoogle Scholar
Ifrim, M. & Tataru, D. 2020 No solitary waves in 2d gravity and capillary waves in deep water. Nonlinearity 33 (10), 54575476.10.1088/1361-6544/ab95adCrossRefGoogle Scholar
Kharif, C., Kraenkel, R.A., Manna, M.A. & Thomas, R. 2010 The modulational instability in deep water under the action of wind and dissipation. J. Fluid Mech. 664, 138149.10.1017/S0022112010004349CrossRefGoogle Scholar
Kim, B. & Akylas, T.R. 2005 On gravity–capillary lumps. J. Fluid Mech. 540, 337351.10.1017/S0022112005005823CrossRefGoogle Scholar
Longuet-Higgins, M.S. 1989 Capillary–gravity waves of solitary type on deep water. J. Fluid Mech. 200, 451470.10.1017/S002211208900073XCrossRefGoogle Scholar
Longuet-Higgins, M.S. 1993 Capillary–gravity waves of solitary type and envelope solitons on deep water. J. Fluid Mech. 252, 703711.10.1017/S0022112093003945CrossRefGoogle Scholar
Martin, C.I. 2017 Resonant interactions of capillary-gravity water waves. J. Math. Fluid Mech. 19 (4), 807817.10.1007/s00021-016-0306-1CrossRefGoogle Scholar
Martin, C.I. & Matioc, B.-V. 2013 Existence of Wilton Ripples for water waves with constant vorticity and capillary effects. SIAM J. Appl. Maths 73 (4), 15821595.10.1137/120900290CrossRefGoogle Scholar
McLean, J.W. 1982 a Instabilities of finite-amplitude gravity waves on water of finite depth. J. Fluid Mech. 114, 331.10.1017/S0022112082000184CrossRefGoogle Scholar
McLean, J.W. 1982 b Instabilities of finite-amplitude water waves. J. Fluid Mech. 114, 315.10.1017/S0022112082000172CrossRefGoogle Scholar
Milewski, P.A. 2005 Three-dimensional localized solitary gravity-capillary waves. Commun. Math. Sci. 3 (1), 8999.10.4310/CMS.2005.v3.n1.a6CrossRefGoogle Scholar
Murashige, S. & Choi, W. 2021 Linear stability of transversely modulated finite-amplitude capillary waves on deep water. Stud. Appl. Maths 146 (2), 498525.10.1111/sapm.12353CrossRefGoogle Scholar
Părău, E.I., Vanden-Broeck, J.-M. & Cooker, M.J. 2005 Nonlinear three-dimensional gravity–capillary solitary waves. J. Fluid Mech. 536, 99105.10.1017/S0022112005005136CrossRefGoogle Scholar
Rypdal, K. & Rasmussen, J.J. 1989 Stability of solitary structures in the nonlinear schrödinger equation. Phys. Scripta 40 (2), 192201.10.1088/0031-8949/40/2/008CrossRefGoogle Scholar
Saffman, P.G. & Yuen, H.C. 1985 Three-dimensional waves on deep water. In Advances in Nonlinear Waves (ed. A. Jeffrey), vol. 2, pp. 110. Pitman.Google Scholar
Saffman, P.G. & Yuen, H.C. 1978 Stability of a plane soliton to infinitesimal two-dimensional perturbations. Phys. Fluids 21 (8), 14501451.10.1063/1.862364CrossRefGoogle Scholar
Segur, H., Henderson, D. & Carter, J. 2005 Stabilizing the Benjamin–Feir instability. J. Fluid Mech. 539, 229271.10.1017/S002211200500563XCrossRefGoogle Scholar
Shats, M., Punzmann, H. & Xia, H. 2010 Capillary rogue waves. Phys. Rev. Lett. 104 (10), 104503.10.1103/PhysRevLett.104.104503CrossRefGoogle ScholarPubMed
Thomas, R., Kharif, C. & Manna, M. 2012 A nonlinear Schrödinger equation for water waves on finite depth with constant vorticity. Phys. Fluids 24 (12), 127102.10.1063/1.4768530CrossRefGoogle Scholar
Tiron, R. & Choi, W. 2012 Linear stability of finite-amplitude capillary waves on water of infinite depth. J. Fluid Mech. 696, 402422.10.1017/jfm.2012.56CrossRefGoogle Scholar
Zakharov, V.E. & Rubenchik, A.M. 1974 Instability of waveguides and solitons in nonlinear media. JETP 38, 494500.Google Scholar
Zakharov, V.E. 1968 Stability of periodic waves of finite amplitude on the surface of a deep fluid. J. Appl. Mech. Tech. Phys. 9 (2), 190194.10.1007/BF00913182CrossRefGoogle Scholar
Zakharov, V.E. & Ostrovsky, L.A. 2009 Modulation instability: the beginning. Physica D: Nonlinear Phenom. 238 (5), 540548.10.1016/j.physd.2008.12.002CrossRefGoogle Scholar
Zhang, J. & Melville, W.K. 1986 On the stability of weakly-nonlinear gravity-capillary waves. Wave Motion 8 (5), 439454.10.1016/0165-2125(86)90029-6CrossRefGoogle Scholar