Hostname: page-component-5b777bbd6c-gcwzt Total loading time: 0 Render date: 2025-06-19T10:09:42.188Z Has data issue: false hasContentIssue false

On the dynamics and interactions of coherent magnetic dipolar structures in a magnetohydrodynamic rotating shallow water model

Published online by Cambridge University Press:  11 June 2025

Yangyang Cao
Affiliation:
MSU-BIT-SMBU Joint Research Center of Applied Mathematics, Shenzhen MSU-BIT University, Shenzhen, PR China
Alexander Kurganov
Affiliation:
Department of Mathematics and Shenzhen International Center for Mathematics, Southern University of Science and Technology, Shenzhen, PR China
Masoud Rostami*
Affiliation:
Department of Mathematics and Shenzhen International Center for Mathematics, Southern University of Science and Technology, Shenzhen, PR China Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association, D-14412 Potsdam, Germany Laboratory of Dynamical Meteorology, Sorbonne University (SU), Ecole Normale Supérieure (ENS), CNRS, Paris, France
Vladimir Zeitlin
Affiliation:
Laboratory of Dynamical Meteorology, Sorbonne University (SU), Ecole Normale Supérieure (ENS), CNRS, Paris, France
*
Corresponding author: Masoud Rostami, rostamimasoud@yahoo.com, mrostami@lmd.ens.fr

Abstract

In this study, we explore the evolution of instabilities in magneto-quasi-geostrophic (MQG) modons on the $f$-plane using a magnetohydrodynamic rotating shallow water model. The numerical experiments have been conducted using a recently proposed second-order flux-globalisation-based path-conservative central-upwind scheme. Our focus is on the evolution and interactions of three key configurations: singular, regular and hollow MQG modons, which represent cases where the magnetic field is confined within the separatrix, evenly distributed inside and outside the separatrix and localised outside the separatrix, respectively. The singular MQG modon emerges as the most stable configuration, demonstrating the greatest resilience to destabilising forces. A notable observation is its transition from a quadrupolar to a tripolar magnetic field structure before reverting to a quadrupole adjusted magnetic modon, accompanied by a clockwise rotation of the system. In terms of stability, singular modons are the most stable ones, while hollow modons are the least stable. As instabilities develop, southward or northward displacements become significantly more pronounced than eastward or westward movements, primarily due to the Coriolis force. Among the configurations, the hollow (singular) modons experience the biggest (smallest) displacements. Additionally, we investigate modon collisions and highlight three scenarios: interactions between cyclonic and anticyclonic components that form a composite modon with meridional bifurcation; collisions of cyclonic vortices that produce a tripolar structure with counterclockwise rotation; and collisions between anticyclonic components that result in a stable, quasi-stationary tripolar configuration. The resulting magnetic poles exhibit a checkered pattern, with their amplitude decreasing with increasing distance from the central vortex.

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Baey, J.-M. & Carton, X. 2002 Vortex multipoles in two-layer rotating shallow-water flows. J. Fluid Mech. 460, 151175.10.1017/S0022112002008170CrossRefGoogle Scholar
Charbonneau, P., Christensen-Dalsgaard, J., Henning, R., Larsen, R.M., Schou, J., Thompson, M.J. & Tomczyk, S. 1999 Helioseismic constraints on the structure of the solar tachocline. Astrophys. J. 527 (1), 445460.10.1086/308050CrossRefGoogle Scholar
Chertock, A., Kurganov, A., Redle, M. & Zeitlin, V. 2024 Locally divergence-free well-balanced path-conservative central-upwind schemes for rotating shallow water MHD. J. Comput. Phys. 518 (113300).10.1016/j.jcp.2024.113300CrossRefGoogle Scholar
Dikpati, M., Belucz, B., Gilman, P.A. & McIntosh, S.W. 2018 Phase speed of magnetized Rossby waves that cause solar seasons. Astrophys. J. 862 (2), 159.10.3847/1538-4357/aacefaCrossRefGoogle Scholar
Flierl, G.R., Larichev, V.D., McWilliams, J.C. & Reznik, G.M. 1980 The dynamics of baroclinic and barotropic solitary eddies. Dyn. Atmos. Oceans 5 (1), 141.10.1016/0377-0265(80)90009-3CrossRefGoogle Scholar
Gilman, P.A. 2000 Magnetohydrodynamic “shallow-water” equations for the solar tachocline. Astrophys. J. Lett. 544 (1), L79L82.10.1086/317291CrossRefGoogle Scholar
Hori, K., Tobias, S.M. & Jones, C.A. 2020 Solitary magnetostrophic rossby waves in spherical shells. J. Fluid Mech. 904, R3.10.1017/jfm.2020.743CrossRefGoogle Scholar
Hughes, C.W. & Miller, P.I. 2017 Rapid water transport by long-lasting modon eddy pairs in the southern midlatitude oceans. Geophys. Res. Lett. 44 (24), 12,375–12,384.10.1002/2017GL075198CrossRefGoogle Scholar
Ijaz, A., Mirza, A.M. & Azeem, M. 2007 Vortex formation in a non-uniform self-gravitating dusty magnetoplasma. J. Plasma Phys. 73 (4), 591598.10.1017/S0022377806004843CrossRefGoogle Scholar
Jovanović, D. & Shukla, P.K. 2001 Dipolar and tripolar vortices in dusty plasmas. Phys. Scr. T89 (1), 4954.10.1238/Physica.Topical.089a00049CrossRefGoogle Scholar
Khvoles, R., Berson, D. & Kizner, Z. 2005 The structure and evolution of elliptical barotropic modons. J. Fluid Mech. 530, 130.10.1017/S0022112004003234CrossRefGoogle Scholar
Kizner, Z.I. 1988 On the theory of intrathermocline eddies. Dokl. USSR Acad. Sci. 300, 453457.Google Scholar
Kizner, Z.I. 1997 Solitary Rossby waves with baroclinic modes. J. Mar. Res. 55 (4), 671685.10.1357/0022240973224256CrossRefGoogle Scholar
Lahaye, N. & Zeitlin, V. 2022 Coherent magnetic modon solutions in quasi-geostrophic shallow water magnetohydrodynamics. J. Fluid Mech. 941, A15.10.1017/jfm.2022.289CrossRefGoogle Scholar
Lahaye, N., Zeitlin, V. & Dubos, T. 2020 Coherent dipoles in a mixed layer with variable buoyancy: theory compared to observations. Ocean Model. 153, 101673.10.1016/j.ocemod.2020.101673CrossRefGoogle Scholar
Landau, L.D. & Lifshitz, E.M. 1984 Electrodynamics of Continuous Media. Pergamon.Google Scholar
Larichev, V.D. & Reznik, G.M. 1976 Two-dimensional solitary rossby waves. Dokl. USSR Acad. Sci. 231, 10771080.Google Scholar
London, S.D. 2017 Solitary waves in shallow water magnetohydrodynamics. Geophys. Astrophys. Fluid Dyn. 111 (2), 115130.10.1080/03091929.2017.1285916CrossRefGoogle Scholar
Magill, M., Coutino, A., Storer, B.A., Stastna, M. & Poulin, F.J. 2019 Dynamics of nonlinear Alfvén waves in the shallow water magnetohydrodynamic equations. Phys. Rev. Fluids 4 (5), 053701.10.1103/PhysRevFluids.4.053701CrossRefGoogle Scholar
Nycander, J. 1988 New stationary vortex solutions of the Hasegawa–Mima equation. J. Plasma Phys. 39 (3), 418428.10.1017/S0022377800026738CrossRefGoogle Scholar
Rawat, S.P.S. & Rao, N.N. 1993 Kelvin–Helmholtz instability driven by sheared dust flow. Planet. Space Sci. 41 (2), 137140.10.1016/0032-0633(93)90042-ZCrossRefGoogle Scholar
Reznik, G.M. 1987 The structure and dynamics of a two-dimensional Rossby soliton. Okeanologiya 27, 716720.Google Scholar
Rostami, M. & Zeitlin, V. 2017 Influence of condensation and latent heat release upon barotropic and baroclinic instabilities of vortices in a rotating shallow water $f$ -plane model. Geophys. Astrophys. Fluid Dyn. 111 (1), 131.10.1080/03091929.2016.1269897CrossRefGoogle Scholar
Rostami, M. & Zeitlin, V. 2019 a Eastward-moving convection-enhanced modons in shallow water in the equatorial tangent plane. Phys. Fluids 31, 021701 .10.1063/1.5080415CrossRefGoogle Scholar
Rostami, M. & Zeitlin, V. 2019 b Geostrophic adjustment on the equatorial beta-plane revisited. Phys. Fluids 31 (8) 081702.10.1063/1.5110441CrossRefGoogle Scholar
Rostami, M. & Zeitlin, V. 2021 Eastward-moving equatorial modons in moist-convective shallow-water models. Geophys. Astrophys. Fluid Dyn. 115 (3), 345367.10.1080/03091929.2020.1805448CrossRefGoogle Scholar
Rostami, M., Zhao, B. & Petri, S. 2022 On the genesis and dynamics of Madden–Julian oscillation-like structure formed by equatorial adjustment of localized heating. Q. J. R. Meteorol. Soc. 148 (749), 37883813.10.1002/qj.4388CrossRefGoogle Scholar
Shukla, P.K. & Rao, N.N. 1993 Vortex structures in magnetized plasmas with sheared dust flow. Planet. Space Sci. 41 (5), 401403.10.1016/0032-0633(93)90074-CCrossRefGoogle Scholar
Spiegel, E.A. & Zahn, J.-P. 1992 The solar tachocline. Astron. Astrophys. 265, 106114.Google Scholar
Stern, M.E. 1975 Minimal properties of planetary eddies. J. Mar. Res. 33, 113.Google Scholar
Tobias, S.M., Diamond, P.H. & Hughes, D.W. 2007 Beta-plane magnetohydrodynamic turbulence in the solar tachocline. Astrophys. J. Lett. 667 (1), L113L116.10.1086/521978CrossRefGoogle Scholar
Tribbia, J. 1984 Modons in spherical geometry. Geophys. Astrophys. Fluid Dyn. 30 (1-2), 131168.10.1080/03091928408210080CrossRefGoogle Scholar
Vranješ, J., Petrović, D. & Shukla, P.K. 2001 Low-frequency potential structures in a nonuniform dusty magnetoplasma. Phys. Lett. A 278 (4), 231238.10.1016/S0375-9601(00)00749-0CrossRefGoogle Scholar
Yano, J.-I. & Tribbia, J. 2017 Tropical atmospheric Madden–Julian oscillation: a strongly nonlinear free solitary Rossby wave? J. Atmos. Sci. 74 (10), 34733489.10.1175/JAS-D-16-0319.1CrossRefGoogle Scholar
Zaqarashvili, T.V., et al. 2021 Rossby waves in astrophysics. Space Sci. Rev. 217 (1), 193.10.1007/s11214-021-00790-2CrossRefGoogle Scholar
Zeitlin, V. 2018 Geophysical Fluid Dynamics: Understanding (almost) Everything with Rotating Shallow Water Models. Oxford University Press.10.1093/oso/9780198804338.001.0001CrossRefGoogle Scholar