Hostname: page-component-5b777bbd6c-xnzsz Total loading time: 0 Render date: 2025-06-23T04:28:28.289Z Has data issue: false hasContentIssue false

Tailoring formations of self-organising hydrofoil schools towards high-efficiency

Published online by Cambridge University Press:  11 June 2025

Tianjun Han*
Affiliation:
Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, PA 18015, USA
Amin Mivehchi
Affiliation:
Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, PA 18015, USA
Seyedali Seyedmirzaei Sarraf
Affiliation:
Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, PA 18015, USA
Keith W. Moored
Affiliation:
Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, PA 18015, USA
*
Corresponding author: Tianjun Han, tih216@lehigh.edu

Abstract

We present new unconstrained simulations and constrained experiments of a pair of pitching hydrofoils in a leader–follower in-line arrangement. Free-swimming simulations with matched pitching amplitudes show self-organisation into stable formations at a constant gap distance without any control. Over a wide range of phase synchronisation, amplitude and Lighthill number typical of biology, we discover that the stable gap distance scales with the actual wake wavelength of an isolated foil rather than the nominal wake wavelength. A scaling law for the actual wake wavelength is derived and shown to collapse data across a wide Reynolds number range of $200 \leqslant Re \leqslant 59\,000$. Additionally, vortex analysis uncovers that the leader’s wake wavelength-to-chord ratio, $\lambda /c$, is the key dimensionless variable to maximise the follower’s/collective efficiency. When $\lambda /c \approx 2$ it ensures that the follower’s leading edge suction force and the net force from a nearby vortex pair act in the direction with the foil’s motion thereby reducing the follower’s power. Moreover, in both simulations and experiments mismatched foil amplitudes are discovered to increase the efficiency of hydrofoil schools by 70 % while maintaining a stable formation without closed-loop control. This occurs by (i) increasing the stable gap distance between foils to push them into a high-efficiency zone and (ii) raising the level of efficiency in these zones. This study bridges the gap between constrained and unconstrained studies of in-line schooling by showing that constrained-foil measurements can map out the potential efficiency benefits of schooling. These findings can aid in the design of high-efficiency biorobot schools.

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Akhtar, I., Mittal, R., Lauder, G.V. & Drucker, E. 2007 Hydrodynamics of a biologically inspired tandem flapping foil configuration. Theor. Comput. Fluid Dyn. 21 (3), 155170.CrossRefGoogle Scholar
Akoz, E., Han, P., Liu, G., Dong, H. & Moored, K.W. 2019 Large-amplitude intermittent swimming in viscous and inviscid flows. AIAA J. 57 (9), 18.CrossRefGoogle Scholar
Akoz, E., Mivehchi, A. & Moored, K.W. 2021 Intermittent unsteady propulsion with a combined heaving and pitching foil. Phys. Rev. Fluids 6 (4), 121.CrossRefGoogle Scholar
Akoz, E. & Moored, K.W. 2018 Unsteady propulsion by an intermittent swimming gait. J. Fluid Mech. 834, 149172.CrossRefGoogle Scholar
Alam, M.M. & Muhammad, Z. 2020 Dynamics of flow around a pitching hydrofoil. J. Fluid. Struct. 99, 103151.CrossRefGoogle Scholar
Alaminos-Quesada, J. & Fernandez-Feria, R. 2020 Aerodynamics of heaving and pitching foils in tandem from linear potential theory. AIAA J. 58 (1), 3752.CrossRefGoogle Scholar
Alaminos-Quesada, J. & Fernandez-Feria, R. 2021 Propulsion performance of tandem flapping foils with chordwise prescribed deflection from linear potential theory. Phys. Rev. Fluids 6 (1), 013102.CrossRefGoogle Scholar
Arranz, G., Flores, O. & Garcia-Villalba, M. 2022 Flow interaction of three-dimensional self-propelled flexible plates in tandem. J. Fluid Mech. 931, A5-1–A5-25CrossRefGoogle Scholar
Ashraf, I., Bradshaw, H., Ha, T.T., Halloy, J., Godoy-Diana, R. & Thiria, B. 2017 Simple phalanx pattern leads to energy saving in cohesive fish schooling. Proc. Natl Acad. Sci. 114 (36), 95999604.CrossRefGoogle ScholarPubMed
Ayancik, F., Fish, F.E. & Moored, K.W. 2020 Three-dimensional scaling laws of cetacean propulsion characterize the hydrodynamic interplay of flukes’ shape and kinematics. J. R. Soc. Interface 17 (163), 20190655.CrossRefGoogle ScholarPubMed
Ayancik, F., Zhong, Q., Quinn, D.B., Brandes, A., Bart-Smith, H. & Moored, K.W. 2019 Scaling laws for the propulsive performance of three-dimensional pitching propulsors. J. Fluid Mech. 871, 11171138.CrossRefGoogle Scholar
Baddoo, P.J., Moore, N.J., Oza, A.U. & Crowdy, D.G. 2023 Generalization of waving-plate theory to multiple interacting swimmers. Commun. Pure Appl. Maths 76 (12), 38113851.CrossRefGoogle Scholar
Becker, A.D., Masoud, H., Newbolt, J.W., Shelley, M. & Ristroph, L. 2015 Hydrodynamic schooling of flapping swimmers. Nat. Commun. 6 (May), 18.CrossRefGoogle ScholarPubMed
Boschitsch, B.M., Dewey, P.A. & Smits, A.J. 2014 Propulsive performance of unsteady tandem hydrofoils in an in-line configuration. Phys. Fluids 26 (5), 051901-1–051901-17.CrossRefGoogle Scholar
Das, A., Shukla, R.K. & Govardhan, R.N. 2019 Foil locomotion through non-sinusoidal pitching motion. J. Fluid. Struct. 89, 191202.CrossRefGoogle Scholar
Eloy, C. 2013 On the best design for undulatory swimming. J. Fluid Mech. 717, 4889.CrossRefGoogle Scholar
Garrick, I.E. 1936 Propulsion of a flapping and oscillating airfoil. Tech. Rep, Langley Memorial Aeronautical Laboratory.Google Scholar
Godoy-Diana, R., Aider, J.-L. & Wesfreid, J.E. 2008 Transitions in the wake of a flapping foil. Phys. Rev. E 77 (1), 016308.CrossRefGoogle ScholarPubMed
Han, P., Pan, Y., Liu, G. & Dong, H. 2022 a Propulsive performance and vortex wakes of multiple tandem foils pitching in-line. J. Fluid. Struct. 108, 103422.CrossRefGoogle Scholar
Han, T., Mivehchi, A., Kurt, M. & Moored, K.W. 2022 b Tailoring the bending pattern of non-uniformly flexible pitching hydrofoils enhances propulsive efficiency. Bioinspir. Biomim. 17 (6), 065003.CrossRefGoogle ScholarPubMed
Han, T., Zhong, Q., Mivehchi, A., Quinn, D.B. & Moored, K.W. 2024 Revealing the mechanism and scaling laws behind equilibrium altitudes of near-ground pitching hydrofoils. J. Fluid Mech. 978, A5.CrossRefGoogle Scholar
Harvey, S.T., Muhawenimana, V., Müller, S., Wilson, C.A.M.E. & Denissenko, P. 2022 An inertial mechanism behind dynamic station holding by fish swinging in a vortex street. Sci. Rep.-UK 12 (1), 19.Google Scholar
Heydari, S., Hang, H. & Kanso, E. 2024 Mapping spatial patterns to energetic benefits in groups of flow-coupled swimmers. eLife 13, RP96129.CrossRefGoogle ScholarPubMed
Heydari, S. & Kanso, E. 2021 School cohesion, speed and efficiency are modulated by the swimmers flapping motion. J. Fluid Mech. 922, A27.CrossRefGoogle Scholar
Katz, J. & Plotkin, A. 2001 Low-speed aerodynamics, Second Edition.Google Scholar
Kelly, J., Pan, Y., Menzer, A. & Dong, H. 2023 Hydrodynamics of body-body interactions in dense synchronous elongated fish schools. Phys. Fluids 35 (4), 041906-1–041906-18.CrossRefGoogle Scholar
Kurt, M., Eslam Panah, A. & Moored, K.W. 2020 Flow interactions between low aspect ratio hydrofoils in in-line and staggered arrangements. Biomimetics 5 (2), 13.CrossRefGoogle ScholarPubMed
Kurt, M., Mivehchi, A. & Moored, K. 2021 High-efficiency can be achieved for non-uniformly flexible pitching hydrofoils via tailored collective interactions. Fluids 6 (7), 1014.CrossRefGoogle Scholar
Kurt, M. & Moored, K.W. 2018 Flow interactions of two- and three-dimensional networked bio-inspired control elements in an in-line arrangement. Bioinspir. Biomim. 13 (4), 045002.CrossRefGoogle Scholar
Lagopoulos, N.S., Weymouth, G.D. & Ganapathisubramani, B. 2020 Deflected wake interaction of tandem flapping foils. J. Fluid Mech. 903, A9.CrossRefGoogle Scholar
Li, L., Nagy, M., Graving, J.M., Bak-Coleman, J., Xie, G. & Couzin, I.D. 2020 Vortex phase matching as a strategy for schooling in robots and in fish. Nat. Commun. 11 (1), 19.Google ScholarPubMed
Lin, X., Wu, J., Yang, L. & Dong, H. 2022 Two-dimensional hydrodynamic schooling of two flapping swimmers initially in tandem formation. J. Fluid Mech. 941, 117.CrossRefGoogle Scholar
Lin, X., Wu, J., Zhang, T. & Yang, L. 2019 Phase difference effect on collective locomotion of two tandem autopropelled flapping foils. Phys. Rev. Fluids 4 (5), 120.CrossRefGoogle Scholar
Mackowski, A.W. & Williamson, C.H.K. 2015 Direct measurement of thrust and efficiency of an airfoil undergoing pure pitching. J. Fluid Mech. 765, 524543.CrossRefGoogle Scholar
Marras, S., Killen, S.S., Lindström, J., McKenzie, D.J., Steffensen, J.F. & Domenici, P. 2015 Fish swimming in schools save energy regardless of their spatial position. Behav. Ecol. Sociobiol. 69 (2), 19226.CrossRefGoogle ScholarPubMed
Moored, K.W. 2018 Unsteady three-dimensional boundary element method for self-propelled bio-inspired locomotion. Comput. Fluids 167, 324340.CrossRefGoogle Scholar
Moored, K.W. & Quinn, D.B. 2019 Inviscid scaling laws of a self-propelled pitching airfoil. AIAA J. 57 (9), 36863700.CrossRefGoogle Scholar
Muscutt, L.E., Weymouth, G.D. & Ganapathisubramani, B. 2017 Performance augmentation mechanism of in-line tandem flapping foils. J. Fluid Mech. 827, 484505.CrossRefGoogle Scholar
Narsipur, S., Hosangadi, P., Gopalarathnam, A. & Edwards, J.R. 2020 Variation of leading-edge suction during stall for unsteady aerofoil motions. J. Fluid Mech. 900, A25.CrossRefGoogle Scholar
Newbolt, J.W., Lewis, N., Bleu, M., Wu, J., Mavroyiakoumou, C., Ramananarivo, S. & Ristroph, L. 2024 Flow interactions lead to self-organized flight formations disrupted by self-amplifying waves. Nat. Commun. 15 (1), 3462.CrossRefGoogle ScholarPubMed
Newbolt, J.W., Zhang, J. & Ristroph, L. 2019 Flow interactions between uncoordinated flapping swimmers give rise to group cohesion. Proc. Natl Acad. Sci. USA 116 (7), 24192424.CrossRefGoogle ScholarPubMed
Newbolt, J.W., Zhang, J. & Ristroph, L. 2022 Lateral flow interactions enhance speed and stabilize formations of flapping swimmers. Phys. Rev. Fluids 7 (6), 18.CrossRefGoogle Scholar
Ormonde, P.C., Kurt, M., Mivehchi, A. & Moored, K.W. 2024 Two-dimensionally stable self-organisation arises in simple schooling swimmers through hydrodynamic interactions. J. Fluid Mech. 1000, A90.CrossRefGoogle Scholar
Pan, Y. & Dong, H. 2022 Effects of phase difference on hydrodynamic interactions and wake patterns in high-density fish schools. Phys. Fluids 34 (11), 111902-1–111902-17.CrossRefGoogle Scholar
Pan, Y., Dong, X., Zhu, Q. & Yue, D.K.P. 2012 Boundary-element method for the prediction of performance of flapping foils with leading-edge separation. J. Fluid Mech. 698, 446467.CrossRefGoogle Scholar
Ramananarivo, S., Fang, F., Oza, A., Zhang, J. & Ristroph, L. 2016 Flow interactions lead to orderly formations of flapping wings in forward flight. Phys. Rev. Fluids 1 (7), 19.CrossRefGoogle Scholar
Ramesh, K., Gopalarathnam, A., Granlund, K., Ol, M.V. & Edwards, J.R. 2014 Discrete-vortex method with novel shedding criterion for unsteady aerofoil flows with intermittent leading-edge vortex shedding. J. Fluid Mech. 751, 500538.CrossRefGoogle Scholar
Read, D.A., Hover, F.S. & Triantafyllou, M.S. 2003 Forces on oscillating foils for propulsion and maneuvering. J. Fluid. Struct. 17 (1), 163183.CrossRefGoogle Scholar
Ristroph, L. & Zhang, J. 2008 Anomalous hydrodynamic drafting of interacting flapping flags. Phys. Rev. Lett. 101 (19), 14.CrossRefGoogle ScholarPubMed
Ryu, J., Yang, J., Park, S.G. & Sung, H.J. 2020 Phase-mediated locomotion of two self-propelled flexible plates in a tandem arrangement. Phys. Fluids 32 (4), 041901-1–041901-11.CrossRefGoogle Scholar
Saadat, M., Berlinger, F., Sheshmani, A., Nagpal, R., Lauder, G.V. & Haj-Hariri, H. 2021 Hydrodynamic advantages of in-line schooling. Bioinspir. Biomim. 16 (4), 046002.CrossRefGoogle ScholarPubMed
Sedky, G., Lagor, F.D. & Jones, A. 2020 Unsteady aerodynamics of lift regulation during a transverse gust encounter. Phys. Rev. Fluids 5 (7), 74701.CrossRefGoogle Scholar
Thandiackal, R. & Lauder, G.V. 2023 In-line swimming dynamics revealed by fish interacting with a robotic mechanism. ELife 12, 119.CrossRefGoogle ScholarPubMed
Theodorsen, T. 1935 General theory of aerodynamic instability and the mechanism of flutter, Tech. Rep.. NACA report No. 496.Google Scholar
Vatistas, G.H., Kozel, V. & Mih, W.C. 1991 A simpler model for concentrated vortices. Exp. Fluids 11 (1), 7376.CrossRefGoogle Scholar
Wang, C. & Eldredge, J.D. 2013 Low-order phenomenological modeling of leading-edge vortex formation. Theor. Comput. Fluid Dyn. 27 (5), 577598.CrossRefGoogle Scholar
Wang, G., Ng, B.F., Teo, Z.W., Lua, K.B. & Bao, Y. 2021 Performance augmentation mechanism of tandem flapping foils with stroke time-asymmetry. Aerosp. Sci. Technol. 117, 106939.CrossRefGoogle Scholar
Weihs, D. 1973 Hydromechanics of fish schooling [24]. Nature 241 (5387), 290291.CrossRefGoogle Scholar
Zhang, Y. & Lauder, G.V. 2023 Energetics of collective movement in vertebrates. J. Exp. Biol. 226 (20), jeb.245617-1–jeb.245617-10.CrossRefGoogle ScholarPubMed
Zhang, Y. & Lauder, G.V. 2024 Energy conservation by collective movement in schooling fish. ELife 12, 144.CrossRefGoogle ScholarPubMed
Zheng, X., Pröbsting, S., Wang, H. & Li, Y. 2021 Characteristics of vortex shedding from a sinusoidally pitching hydrofoil at high Reynolds number. Phys. Rev. Fluids 6 (8), 126.CrossRefGoogle Scholar