Hostname: page-component-5b777bbd6c-rbv74 Total loading time: 0 Render date: 2025-06-19T22:16:08.789Z Has data issue: false hasContentIssue false

Viscous flow through high-permeability channels in a layered porous medium

Published online by Cambridge University Press:  11 June 2025

Anoop Rathore
Affiliation:
Department of Civil Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
Zhong Zheng*
Affiliation:
State Key Laboratory of Ocean Engineering, School of Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China MOE Key Laboratory of Hydrodynamics, School of Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
Chunendra K. Sahu*
Affiliation:
Department of Civil Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
*
Corresponding authors: Zhong Zheng, zzheng@alumni.princeton.edu, zhongzheng@sjtu.edu.cn; Chunendra K. Sahu, cksahu@iitk.ac.in
Corresponding authors: Zhong Zheng, zzheng@alumni.princeton.edu, zhongzheng@sjtu.edu.cn; Chunendra K. Sahu, cksahu@iitk.ac.in

Abstract

Viscous flow through high-permeability channels occurs in many environmental and industrial applications, including carbon sequestration, groundwater flow and enhanced oil recovery. In this work, we study the displacement of a less-viscous fluid by a more-viscous fluid in a layered porous medium in a rectilinear configuration, where two low-permeability layers sandwich a higher-permeability layer. We derive a theoretical model that is validated using corroborative laboratory experiments, when the influence of the density difference is negligible. We find that the location of the propagating front increases with time according to a power-law form $x_f \propto t^{1/2}$, while the fluid–fluid interface exhibits a self-similar shape, when the motion of the displaced fluid is negligible in an unconfined porous medium. In the experimental set-up, distinct permeability layers were constructed using various sizes of spherical glass beads. The working fluids comprised fresh water as the less-viscous ambient fluid, and a glycerine–water mixture as the more-viscous injecting fluid. Our experimental measurement show a better match with the theory for the experiments performed at low Reynolds numbers and with permeable boundaries in the far field.

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Acton, J.M., Huppert, H.E. & Worster, M.G. 2001 Two-dimensional viscous gravity currents flowing over a deep porous medium. J. Fluid Mech. 440, 359380.10.1017/S0022112001004700CrossRefGoogle Scholar
Aker, E., Maloy, K.J. & Hansen, A. 2000 Dynamics of stable viscous displacements in porous media. Phys. Rev. E 61 (3), 29362946.10.1103/PhysRevE.61.2936CrossRefGoogle Scholar
Al-Housseiny, T.T., Tsai, P.A. & Stone, H.A. 2012 Control of interfacial instabilities using flow geometry. Nat. Phys. 8 (10), 747750.10.1038/nphys2396CrossRefGoogle Scholar
Babadagli, T. 2003 Evaluation of EOR methods for heavy-oil recovery in naturally fractured reservoirs. J. Petrol. Sci. Engng 37 (1–2), 2537.10.1016/S0920-4105(02)00309-1CrossRefGoogle Scholar
Benson, S.M. & Cole, D.R. 2008 CO $_2$ sequestration in deep sedimentary formations. Elements 4, 325331.10.2113/gselements.4.5.325CrossRefGoogle Scholar
Beven, K. & Germann, P. 1982 Macropores and water flow in soils. Water Resour. Res. 18 (5), 13111325.10.1029/WR018i005p01311CrossRefGoogle Scholar
Bickle, M.J., Chadwick, A., Huppert, H.E., Hallworth, M. & Lyle, S. 2007 Modelling carbon dioxide accumulation at Sleipner: implications for underground carbon storage. Earth Planet. Sci. Lett. 255 (1–2), 164176.10.1016/j.epsl.2006.12.013CrossRefGoogle Scholar
Boait, F.C., White, N.J., Bickle, M.J., Chadwick, R.A., Neufeld, J.A. & Huppert, H.E. 2012 Spatial and temporal evolution of injected CO $_2$ at the Sleipner Field, North Sea. J. Geophys. Res. 117, B03309.Google Scholar
Coats, K.H., Dempsey, J.R. & Henderson, J.H. 1971 The use of vertical equilibrium in two-dimensional simulation of three-dimensional reservoir performance. Soc. Petrol. Engng J. 11 (1), 6371.10.2118/2797-PACrossRefGoogle Scholar
Farcas, A. & Woods, A.W. 2009 The effect of drainage on the capillary retention of CO $_2$ in a layered permeable rock. J. Fluid Mech. 618, 349359.10.1017/S0022112008004400CrossRefGoogle Scholar
Grenfell-Shaw, J.C., Hinton, E.M. & Woods, A.W. 2021 Instability of co-flow in a Hele-Shaw cell with cross-flow varying thickness. J. Fluid Mech. 927, R1.10.1017/jfm.2021.731CrossRefGoogle Scholar
Guo, B., Zheng, Z., Bandilla, K.W., Celia, M.A. & Stone, H.A. 2016 Flow regime analysis for geologic CO $_2$ sequestration and other subsurface fluid injections. Intl J. Greenh. Gas Control 53, 284291.10.1016/j.ijggc.2016.08.007CrossRefGoogle Scholar
Hesse, M.A. & Woods, A.W. 2010 Buoyant dispersal of CO2 during geological storage. Geophys. Res. Lett. 37, L01403.10.1029/2009GL041128CrossRefGoogle Scholar
Hinton, E.M. & Woods, A.W. 2018 Buoyancy-driven flow in a confined aquifer with a vertical gradient of permeability. J. Fluid Mech. 848, 411429.10.1017/jfm.2018.375CrossRefGoogle Scholar
Hinton, E.M. & Woods, A.W. 2019 The effect of vertically varying permeability on tracer dispersion. J. Fluid Mech. 860, 384407.10.1017/jfm.2018.891CrossRefGoogle Scholar
Huppert, H.E. & Woods, A.W. 1995 Gravity driven flows in porous layers. J. Fluid Mech. 292, 5569.10.1017/S0022112095001431CrossRefGoogle Scholar
Kondic, L., Shelley, M.J. & Palffy-Muhoray, P. 1998 Non-Newtonian Hele-Shaw flow and the Saffman–Taylor instability. Phys. Rev. Lett. 80 (7), 14331436.10.1103/PhysRevLett.80.1433CrossRefGoogle Scholar
Lenormand, R., Zarcone, C. & Sarr, A. 1983 Mechanisms of the displacement of one fluid by another in a network of capillary ducts. J. Fluid Mech. 135, 337353.10.1017/S0022112083003110CrossRefGoogle Scholar
Liu, Y., Zheng, Z. & Stone, H.A. 2017 The influence of capillary effects on the drainage of a viscous gravity current into a deep porous medium. J. Fluid Mech. 817, 514559.10.1017/jfm.2017.125CrossRefGoogle Scholar
Neufeld, J.A. & Huppert, H.E. 2009 Modelling carbon dioxide sequestration in layered strata. J. Fluid Mech. 625, 353370.10.1017/S0022112008005703CrossRefGoogle Scholar
Nijjer, J.S., Hewitt, D.R. & Neufeld, J.A. 2018 The dynamics of miscible viscous fingering from onset to shutdown. J. Fluid Mech. 837, 520545.10.1017/jfm.2017.829CrossRefGoogle Scholar
Nijjer, J.S., Hewitt, D.R. & Neufeld, J.A. 2019 Stable and unstable miscible displacements in layered porous media. J. Fluid Mech. 869, 468499.10.1017/jfm.2019.190CrossRefGoogle ScholarPubMed
Nordbotten, J.M., Kavetski, D., Celia, M.A. & Bachu, S. 2009 Model for CO $_2$ leakage including multiple geological layers and multiple leaky wells. Environ. Sci. Technol. 43, 743749.10.1021/es801135vCrossRefGoogle Scholar
Pegler, S.S., Huppert, H.E. & Neufeld, J.A. 2014 Fluid injection into a confined porous layer. J. Fluid Mech. 745, 592620.10.1017/jfm.2014.76CrossRefGoogle Scholar
Pritchard, D., Woods, A.W. & Hogg, A.W. 2001 On the slow draining of a gravity current moving through a layered permeable medium. J. Fluid Mech. 444, 2347.10.1017/S002211200100516XCrossRefGoogle Scholar
Saffman, P.G. & Taylor, G.I. 1958 The penetration of a fluid into a porous medium or Hele-Shaw cell containing a more viscous fluid. Proc. R. Soc. A 245, 312329.Google Scholar
Sahu, C.K. & Flynn, M.R. 2017 The effect of sudden permeability changes in porous media filling box flows. Transp. Porous Media 119 (1), 95118.10.1007/s11242-017-0875-3CrossRefGoogle Scholar
Sahu, C.K. & Neufeld, J.A. 2023 Experimental insights into gravity-driven flows and mixing in layered porous media. J. Fluid Mech. 956, A27.10.1017/jfm.2022.1082CrossRefGoogle Scholar
Tilley, B.S., Ueckert, M. & Baumann, T. 2021 Porosity dynamics through carbonate-reaction kinetics in high-temperature aquifer storage applications. Math. Geosci. 53 (7), 15351565.10.1007/s11004-021-09932-2CrossRefGoogle Scholar
Woods, A.W. & Farcas, A. 2009 Capillary entry pressure and the leakage of gravity currents through a sloping layered permeable rock. J. Fluid Mech. 618, 361379.10.1017/S0022112008004527CrossRefGoogle Scholar
Yu, Y.E., Zheng, Z. & Stone, H.A. 2017 Flow of a gravity current in a porous medium accounting for drainage from a permeable substrate and an edge. Phys. Rev. Fluids 2 (7), 074101.10.1103/PhysRevFluids.2.074101CrossRefGoogle Scholar
Zheng, Z. 2022 Upscaling unsaturated flows in vertically heterogeneous porous layers. J. Fluid Mech. 950, A17.10.1017/jfm.2022.816CrossRefGoogle Scholar
Zheng, Z., Guo, B., Christov, I.C., Celia, M.A. & Stone, H.A. 2015 Flow regimes for fluid injection into a confined porous medium. J. Fluid Mech. 767, 881909.10.1017/jfm.2015.68CrossRefGoogle Scholar
Zheng, Z., Soh, B., Huppert, H.E. & Stone, H.A. 2013 Fluid drainage from the edge of a porous reservoir. J. Fluid Mech. 718, 558568.10.1017/jfm.2012.630CrossRefGoogle Scholar
Supplementary material: File

Rathore et al. supplementary material

Rathore et al. supplementary material
Download Rathore et al. supplementary material(File)
File 9.5 MB