Hostname: page-component-784d4fb959-9bxm5 Total loading time: 0 Render date: 2025-07-16T19:47:30.768Z Has data issue: false hasContentIssue false

Are we missing the boat? Time for using multiple independent loci in trematode diversity studies

Published online by Cambridge University Press:  10 July 2025

I. Blasco-Costa*
Affiliation:
Department of Invertebrates, https://ror.org/03ftcjb67 Natural History Museum of Geneva , PO Box 6434, 1211 Geneva 6, Switzerland
*
Corresponding author: I. Blasco-Costa; Email: isabel.blasco-costa@geneve.ch

Abstract

Over the years, the number of parasitic helminth species discoveries has not ceased to increase and the popularisation of the use of molecular methods has contributed greatly to sustain the growth in knowledge. However, molecular approaches evolved rapidly in the last 20 years. I argue that the research community working on parasitic helminths has lagged behind in the application of molecular methods that examine multiple loci to study species diversity. In this paper, I review the recent historical trends in the molecular markers used to study trematode diversity. Except for the emergence of pioneer mitogenome studies, the use of markers has not changed in the past 10 years. It is still restricted to single locus or a combination of two, rarely three, mitochondrial and ribosomal loci. I identify past and current molecular approaches providing data on multiple loci across the genome which have found resistance in the trematode and the helminth parasitology fields over the last four decades. I discuss how the knowledge gained from the analysis of genome-wide markers would benefit research on parasite diversity today, in particular for cases of species complexes, cryptic (or nearly cryptic) species, recently diverged species, and species with a complex taxonomic history, or a history of suspected mitonuclear discordance as well as for taxa with wide geographical distributions or species with disjoint distributions. Furthermore, I argue that both, studies with classical markers and reduced-representation genome studies providing genome-wide markers should not walk different paths but feedback on each other to advance the field forward. I examine some challenges and make recommendations for obtaining high-throughput molecular data of parasitic helminths.

Information

Type
Review Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Andriollo, T, Naciri, Y and Ruedi, M (2015) Two mitochondrial barcodes for one biological species: The case of European Kuhl’s pipistrelles (Chiroptera). Plos One 10(8), e0134881. https://doi.org/10.1371/journal.pone.0134881.CrossRefGoogle ScholarPubMed
Avise, JC (2004) Molecular Markers, Natural History and Evolution, 2nd edn. Sunderland, Massachussets: Sinauer Asociates.Google Scholar
Avise, JC, Arnold, J, Ball, RM, Bermingham, E, Lamb, T, Neigel, JE, Reeb, CA and Saunders, NC (1987) Intraspecific phylogeography - The mitochondrial-DNA bridge between population genetics and systematics. Annual Review of Ecology and Systematics 18, 489522. https://doi.org/10.1146/annurev.ecolsys.18.1.489.CrossRefGoogle Scholar
Ayana, M, Cools, P, Mekonnen, Z, Biruksew, A, Dana, D, Rashwan, N, Prichard, R, Vlaminck, J, Verweij, JJ and Levecke, B (2019) Comparison of four DNA extraction and three preservation protocols for the molecular detection and quantification of soil-transmitted helminths in stool. PLoS Neglected Tropical Diseases 13(10), e0007778. https://doi.org/10.1371/journal.pntd.0007778.CrossRefGoogle ScholarPubMed
Bass, D, Stentiford, GD, Littlewood, DTJ and Hartikainen, H (2015) Diverse applications of environmental DNA methods in parasitology. Trends in Parasitology 31(10), 499513. https://doi.org/10.1016/j.pt.2015.06.013.CrossRefGoogle ScholarPubMed
Bazsalovicsová, E, Minárik, G, Šoltys, K, Radačovská, A, Kuhn, JA, Karlsbakk, E, Skírnisson, K and Králová-Hromadová, I (2020) Development of 14 microsatellite markers for zoonotic tapeworm dibothriocephalus dendriticus (cestoda: Diphyllobothriidea). Genes 11(7), 782.10.3390/genes11070782CrossRefGoogle ScholarPubMed
Blasco-Costa, I, Cutmore, SC, Miller, TL and Nolan, MJ (2016) Molecular approaches to trematode systematics: ‘Best practice’ and implications for future study. Systematic Parasitology 93(3), 295306. https://doi.org/10.1007/s11230-016-9631-2.CrossRefGoogle ScholarPubMed
Blasco-Costa, I and Poulin, R (2017) Parasite life-cycle studies: A plea to resurrect an old parasitological tradition. Journal of Helminthology 91, 647656. https://doi.org/10.1017/S0022149X16000924.CrossRefGoogle ScholarPubMed
Brabec, J, Gauthier, J, Selz, OM, Knudsen, R, Bilat, J, Alvarez, N, Seehausen, O, Feulner, PGD, Præbel, K and Blasco-Costa, I (2024) Testing the radiation cascade in postglacial radiations of whitefish and their parasites: Founder events and host ecology drive parasite evolution. Evolution Letters 8(5), 706718. https://doi.org/10.1093/evlett/qrae025.CrossRefGoogle ScholarPubMed
Brabec, J, Rochat, EC, Knudsen, R, Scholz, T and Blasco-Costa, I (2023) Mining various genomic resources to resolve old alpha-taxonomy questions: A test of the species hypothesis of the Proteocephalus longicollis species complex (Cestoda: Platyhelminthes) from salmonid fishes. International Journal for Parasitology 53(4), 197205. https://doi.org/10.1016/j.ijpara.2022.12.005.CrossRefGoogle ScholarPubMed
Brooks, DR and Hoberg, EP (2001) Parasite systematics in the 21st century: Opportunities and obstacles. Trends in Parasitology 17(6), 273275.10.1016/S1471-4922(01)01894-3CrossRefGoogle ScholarPubMed
Brower, AVZ, DeSalle, R and Vogler, A (1996) Gene trees, species trees, and systematics: A cladistic perspective. Annual Review of Ecology and Systematics 27, 423450.10.1146/annurev.ecolsys.27.1.423CrossRefGoogle Scholar
Brown, WM, George, M and Wilson, AC (1979) Rapid evolution of animal mitochondrial DNA. Proceedings of the National Academy of Sciences of the United States of America 76(4), 19671971.10.1073/pnas.76.4.1967CrossRefGoogle ScholarPubMed
Caira, JN (2011) Synergy advances parasite taxonomy and systematics: An example from elasmobranch tapeworms. Parasitology 138(Special Issue 13), 16751687.10.1017/S0031182011000643CrossRefGoogle ScholarPubMed
Carlson, CJ, Dallas, TA, Alexander, LW, Phelan, AL and Phillips, AJ (2020) What would it take to describe the global diversity of parasites? Proceedings of the Royal Society B: Biological Sciences 287(1939), 20201841. https://doi.org/10.1098/rspb.2020.1841.CrossRefGoogle ScholarPubMed
Cribb, TH (2016) Editorial: The biodiversity of trematodes of fishes. Systematic parasitology 93, 219221. https://doi.org/10.1007/s11230-016-9628-x.CrossRefGoogle ScholarPubMed
Cribb, TH, Barton, DP, Blair, D, Bott, NJ, Bray, RA, Corner, RD, Cutmore, SC, De Silva, MLI, Duong, B, Faltýnková, A, Gonchar, A, Hechinger, RF, Herrmann, KK, Huston, DC, Johnson, PTJ, Kremnev, G, Kuchta, R, Louvard, C, Luus-Powell, WJ, Martin, SB, Miller, TL, Pérez-Ponce de León, G, Smit, NJ, Tkach, VV, Truter, M, Waki, T, Vermaak, A, Wee, NQX, Yong, RQY and Achatz, TJ (2025) Challenges in the recognition of trematode species: Consideration of hypotheses in an inexact science. Journal of Helminthology 99, e54. https://doi.org/10.1017/S0022149X25000367.CrossRefGoogle Scholar
Cribb, TH, Bott, NJ, Bray, RA, McNamara, MK, Miller, TL, Nolan, MJ and Cutmore, SC (2014) Trematodes of the Great Barrier Reef, Australia: Emerging patterns of diversity and richness in coral reef fishes. International Journal for Parasitology 44(12), 929939.10.1016/j.ijpara.2014.08.002CrossRefGoogle ScholarPubMed
Cribb, TH, Bray, RA, Justine, J-L, Reimer, J, Sasal, P, Shirakashi, S and Cutmore, SC (2022) A world of taxonomic pain: cryptic species, inexplicable host-specificity, and host-induced morphological variation among species of Bivesicula Yamaguti, 1934 (Trematoda: Bivesiculidae) from Indo-Pacific Holocentridae, Muraenidae and Serranidae. Parasitology 149(6), 831853.10.1017/S0031182022000282CrossRefGoogle ScholarPubMed
Criscione, CD (2016) History of microevolutionary thought in parasitology: The integration of molecular population genetics. In Janovy, J Jr and Esch, GW (eds), A Century of Parasitology: Discoveries, Ideas and Lessons Learned by Scientists Who Published in The Journal of Parasitology, 1914-2014. Chichester, UK: John Wiley & Sons, 93109.10.1002/9781118884799.ch7CrossRefGoogle Scholar
Dasmahapatra, KK, Elias, M, Hill, RI, Hoffman, JI and Mallet, J (2010) Mitochondrial DNA barcoding detects some species that are real, and some that are not. Molecular Ecology Resources 10, 264273.10.1111/j.1755-0998.2009.02763.xCrossRefGoogle ScholarPubMed
Davey, JL and Blaxter, MW (2011) RADSeq: Next-generation population genetics. Briefings in Functional Genomics 9(5–6), 416423. https://doi.org/10.1093/bfgp/elq031.CrossRefGoogle Scholar
Dayrat, B (2005) Towards integrative taxonomy. Biological Journal of the Linnean Society 85(3), 407415. https://doi.org/10.1111/j.1095-8312.2005.00503.x.CrossRefGoogle Scholar
De Coster, W, Weissensteiner, MH and Sedlazeck, FJ (2021) Towards population-scale long-read sequencing. Nature Reviews Genetics 22(9), 572587. https://doi.org/10.1038/s41576-021-00367-3.CrossRefGoogle ScholarPubMed
Doyle, SR, Laing, R, Bartley, DJ, Britton, C, Chaudhry, U, Gilleard, JS, Holroyd, N, Mable, BK, Maitland, K, Morrison, AA, Tait, A, Tracey, A, Berriman, M, Devaney, E, Cotton, JA and Sargison, ND (2017) A genome resequencing-based genetic map reveals the recombination landscape of an outbred parasitic nematode in the presence of polyploidy and polyandry. Genome Biology and Evolution 10(2), 396409. https://doi.org/10.1093/gbe/evx269.CrossRefGoogle Scholar
Doyle, SR, Sankaranarayanan, G, Allan, F, Berger, D, Jimenez Castro, PD, Collins, JB, Crellen, T, Duque-Correa, MA, Ellis, P, Jaleta, TG, Laing, R, Maitland, K, McCarthy, C, Moundai, T, Softley, B, Thiele, E, Ouakou, PT, Tushabe, JV, Webster, JP, Weiss, AJ, Lok, J, Devaney, E, Kaplan, RM, Cotton, JA, Berriman, M and Holroyd, N (2019) Evaluation of DNA extraction methods on individual helminth egg and larval stages for whole-genome sequencing. Frontiers in Genetics 10, 826. https://doi.org/10.3389/fgene.2019.00826.CrossRefGoogle ScholarPubMed
Dupuis, JR, Roe, AD and Sperling, FA (2012) Multi-locus species delimitation in closely related animals and fungi: One marker is not enough. Molecular Ecology 21(18), 44224436.10.1111/j.1365-294X.2012.05642.xCrossRefGoogle ScholarPubMed
Feijen, F, Zajac, N, Vorburger, C, Blasco-Costa, I and Jokela, J (2022) Phylogeography and cryptic species structure of a locally adapted parasite in New Zealand. Molecular Ecology 31(15), 41124126. https://doi.org/10.1111/mec.16570.CrossRefGoogle ScholarPubMed
Fujita, MK, Leaché, AD, Burbrink, FT, McGuire, JA and Moritz, C (2012) Coalescent-based species delimitation in an integrative taxonomy. Trends in Ecology and Evolution 27(9), 480488.10.1016/j.tree.2012.04.012CrossRefGoogle Scholar
Fukushima, C, West, R, Pape, T, Penev, L, Schulman, L and Cardoso, P (2021) Wildlife collection for scientific purposes. Conservation Biology 35(1), 511. https://doi.org/10.1111/cobi.13572.CrossRefGoogle ScholarPubMed
Glon, H, Quattrini, A, Rodríguez, E, Titus, BM and Daly, M (2021) Comparison of sequence-capture and ddRAD approaches in resolving species and populations in hexacorallian anthozoans. Molecular Phylogenetics and Evolution 163, 107233. https://doi.org/10.1016/j.ympev.2021.107233.CrossRefGoogle ScholarPubMed
Goodwin, S, McPherson, JD and McCombie, WR (2016) Coming of age: Ten years of next-generation sequencing technologies. Nature Reviews Genetics 17(6), 333351. https://doi.org/10.1038/nrg.2016.49.CrossRefGoogle ScholarPubMed
Hook, PW and Timp, W (2023) Beyond assembly: The increasing flexibility of single-molecule sequencing technology. Nature Reviews Genetics 24(9), 627641. https://doi.org/10.1038/s41576-023-00600-1.CrossRefGoogle ScholarPubMed
Huang, WY, He, B, Wang, CR and Zhu, XQ (2004) Characterisation of fasciola species from mainland China by ITS-2 ribosomal DNA sequence. Veterinary Parasitology 120(1), 7583. https://doi.org/10.1016/j.vetpar.2003.12.006.CrossRefGoogle ScholarPubMed
Hupalo, K, Copilas-Ciocianu, D, Leese, F and Weiss, M (2023) Morphology, nuclear SNPs and mate selection reveal that COI barcoding overestimates species diversity in a Mediterranean freshwater amphipod by an order of magnitude. Cladistics 39(2), 129143. https://doi.org/10.1111/cla.12520.CrossRefGoogle Scholar
Hupało, K., Blasco-Costa, I., Trujillo-González, A., Leese, F. (2025). Detecting and assessing aquatic parasite diversity using environmental DNA. In: Smit, N.J., Sures, B. (eds) Aquatic parasitology: Ecological and environmental concepts and implications of marine and freshwater parasites. Springer, Cham. https://doi.org/10.1007/978-3-031-83903-0_14.Google Scholar
Ichikawa-Seki, M, Hayashi, K, Tashiro, M and Khadijah, S (2022) Dispersal direction of Malaysian Fasciola gigantica from neighboring southeast Asian countries inferred using mitochondrial DNA analysis. Infection, Genetics and Evolution 105, 105373. https://doi.org/10.1016/j.meegid.2022.105373.CrossRefGoogle ScholarPubMed
Kalia, RK, Rai, MK, Kalia, S, Singh, R and Dhawan, AK (2011) Microsatellite markers: An overview of the recent progress in plants. Euphytica 177(3), 309334. https://doi.org/10.1007/s10681-010-0286-9.CrossRefGoogle Scholar
Knapp, J, Meyer, A, Courquet, S, Millon, L, Raoul, F, Gottstein, B and Frey, CF (2021) Echinococcus multilocularis genetic diversity in Swiss domestic pigs assessed by EmsB microsatellite analyzes. Veterinary Parasitology 293, 109429. https://doi.org/10.1016/j.vetpar.2021.109429.CrossRefGoogle ScholarPubMed
Krupenko, D, Kremnev, G, Skobkina, O, Gonchar, A, Uryadova, A and Miroliubov, A (2022) Lecithaster (Lecithasteridae, Digenea) in the White Sea: An unnoticed guest from the Pacific? Journal of Helminthology 96, e43. https://doi.org/10.1017/S0022149X22000281.CrossRefGoogle Scholar
Locke, SA, Van Dam, A, Caffara, M, Pinto, HA, López-Hernández, D and Blanar, CA (2018) Validity of the Diplostomoidea and Diplostomida (Digenea, Platyhelminthes) upheld in phylogenomic analysis. International Journal for Parasitology 48(13), 10431059. https://doi.org/10.1016/j.ijpara.2018.07.001.CrossRefGoogle ScholarPubMed
Luikart, G, Kardos, M, Hand, BK, Rajora, OP, Aitken, SN and Hohenlohe, PA (2019) Population genomics: Advancing understanding of nature. In Rajora, OP (ed), Population Genomics: Concepts, Approaches and Applications. Cham: Springer International Publishing, 379.Google Scholar
Mueller, UG and Wolfenbarger, LL (1999) AFLP genotyping and fingerprinting. Trends in Ecology & Evolution 14(10), 389394.10.1016/S0169-5347(99)01659-6CrossRefGoogle ScholarPubMed
Mulcahy, DG, Macdonald, KS III, Brady, SG, Meyer, C, Barker, KB and Coddington, J (2016) Greater than X kb: A quantitative assessment of preservation conditions on genomic DNA quality, and a proposed standard for genome-quality DNA. PeerJ 4, e2528. https://doi.org/10.7717/peerj.2528.CrossRefGoogle Scholar
Nazarizadeh, M, Nováková, M, Loot, G, Gabagambi, NP, Fatemizadeh, F, Osano, O, Presswell, B, Poulin, R, Vitál, Z, Scholz, T, Halajian, A, Trucchi, E, Kočová, P and Štefka, J (2023) Historical dispersal and host-switching formed the evolutionary history of a globally distributed multi-host parasite – The Ligula intestinalis species complex. Molecular Phylogenetics and Evolution 180, 107677. https://doi.org/10.1016/j.ympev.2022.107677.CrossRefGoogle ScholarPubMed
Nolan, MJ and Cribb, TH (2005) The use and implications of ribosomal DNA sequencing for the discrimination of digenean species. Advances in Parasitology 60, 101163. https://doi.org/10.1016/s0065-308x(05)60002-4.CrossRefGoogle ScholarPubMed
Oosting, T, Hilario, E, Wellenreuther, M and Ritchie, PA (2020) DNA degradation in fish: Practical solutions and guidelines to improve DNA preservation for genomic research. Ecology and Evolution 10(16), 86438651. https://doi.org/10.1002/ece3.6558.CrossRefGoogle ScholarPubMed
Panzner, U and Boissier, J (2021) Natural intra- and interclade human hybrid schistosomes in Africa with considerations on prevention through vaccination. Microorganisms 9(7), 1465. https://doi.org/10.3390/microorganisms9071465.CrossRefGoogle ScholarPubMed
Papaiakovou, M, Pilotte, N, Baumer, B, Grant, J, Asbjornsdottir, K, Schaer, F, Hu, Y, Aroian, R, Walson, J and Williams, SA (2018) A comparative analysis of preservation techniques for the optimal molecular detection of hookworm DNA in a human fecal specimen. PLoS Neglected Tropical Diseases 12(1), e0006130. https://doi.org/10.1371/journal.pntd.0006130.CrossRefGoogle Scholar
Pearson, DL, Hamilton, AL and Erwin, TL (2011) Recovery plan for the endangered taxonomy profession. Bioscience 61(1), 5863.10.1525/bio.2011.61.1.11CrossRefGoogle Scholar
Perez-Ponce de Leon, G and Poulin, R (2018) An updated look at the uneven distribution of cryptic diversity among parasitic helminths. Journal of Helminthology 92(2), 197202. https://doi.org/10.1017/S0022149X17000189.CrossRefGoogle Scholar
Perkins, SL, Martinsen, ES and Falk, BG (2011) Do molecules matter more than morphology? Promises and pitfalls in parasites. Parasitology 138(Special Issue 13), 16641674.10.1017/S0031182011000679CrossRefGoogle ScholarPubMed
Poulin, R (2014) Parasite biodiversity revisited: Frontiers and constraints. International Journal for Parasitology 44(9), 581589. http://doi.org/10.1016/j.ijpara.2014.02.003.CrossRefGoogle ScholarPubMed
Poulin, R, Hay, E and Jorge, F (2019) Taxonomic and geographic bias in the genetic study of helminth parasites. International Journal for Parasitology 49(6), 429435.10.1016/j.ijpara.2018.12.005CrossRefGoogle ScholarPubMed
Poulin, R and Presswell, B (2016) Taxonomic quality of species descriptions varies over time and with the number of authors, but unevenly among parasitic taxa. Systematic Biology 65(6), 11071116. https://doi.org/10.1093/sysbio/syw053.CrossRefGoogle ScholarPubMed
Poulin, R and Presswell, B (2022) Is parasite taxonomy really in trouble? A quantitative analysis. International Journal for Parasitology 52(7), 469474. https://doi.org/10.1016/j.ijpara.2022.03.001.CrossRefGoogle ScholarPubMed
Ravinet, M, Faria, R, Butlin, RK, Galindo, J, Bierne, N, Rafajlović, M, Noor, MAF, Mehlig, B and Westram, AM (2017) Interpreting the genomic landscape of speciation: A road map for finding barriers to gene flow. Journal of Evolutionary Biology 30(8), 14501477. https://doi.org/10.1111/jeb.13047.CrossRefGoogle ScholarPubMed
Rojas, A, Bass, LG, Campos-Camacho, J, Dittel-Meza, FA, Fonseca, C, Huang-Qiu, YY, Olivares, RWI, Romero-Vega, LM, Villegas-Rojas, F and Solano-Barquero, A (2025) Integrative taxonomy in helminth analysis: Protocols and limitations in the twenty-first century. Parasites & Vectors 18(1), 87. https://doi.org/10.1186/s13071-025-06682-6.CrossRefGoogle ScholarPubMed
Rubinoff, D, Cameron, S and Will, K (2006) A genomic perspective on the shortcomings of mitochondrial DNA for “barcoding” identification. Journal of Heredity 97, 581594.10.1093/jhered/esl036CrossRefGoogle ScholarPubMed
Sabina, J and Leamon, JH (2015) Bias in whole genome amplification: Causes and considerations. In Kroneis, T (ed), Whole Genome Amplification: Methods and Protocols. New York, NY: Springer New York, 1541.10.1007/978-1-4939-2990-0_2CrossRefGoogle Scholar
Schlötterer, C, Tobler, R, Kofler, R and Nolte, V (2014) Sequencing pools of individuals — mining genome-wide polymorphism data without big funding. Nature Reviews Genetics 15(11), 749763. https://doi.org/10.1038/nrg3803.CrossRefGoogle ScholarPubMed
Selbach, C, Jorge, F, Dowle, E, Bennett, J, Chai, X, Doherty, J-F, Eriksson, A, Filion, A, Hay, E, Herbison, R, Lindner, J, Park, E, Presswell, B, Ruehle, B, Sobrinho, PM, Wainwright, E and Poulin, R (2019) Parasitological research in the molecular age. Parasitology 146(11), 13611370. https://doi.org/10.1017/S0031182019000726.CrossRefGoogle ScholarPubMed
Selkoe, KA and Toonen, RJ (2006) Microsatellites for ecologists: A practical guide to using and evaluating microsatellite markers. Ecology Letters 9, 615629.10.1111/j.1461-0248.2006.00889.xCrossRefGoogle ScholarPubMed
Shortt, JA, Card, DC, Schield, DR, Liu, Y, Zhong, B, Castoe, TA, Carlton, EJ and Pollock, DD (2017) Whole genome amplification and reduced-representation genome sequencing of Schistosoma japonicum miracidia. PLoS Neglected Tropical Diseases 11(1), e0005292.10.1371/journal.pntd.0005292CrossRefGoogle ScholarPubMed
Sites, JW Jr and Marshall, JC (2004) Operational criteria for delimiting species. Annual Review of Ecology, Evolution, and Systematics 35, 199227.10.1146/annurev.ecolsys.35.112202.130128CrossRefGoogle Scholar
Slatko, BE, Gardner, AF and Ausubel, FM (2018) Overview of next-generation sequencing technologies. Current Protocols in Molecular Biology 122(1), e59. https://doi.org/10.1002/cpmb.59.CrossRefGoogle ScholarPubMed
Small, ST, Labbé, F, Coulibaly, YI, Nutman, TB, King, CL, Serre, D and Zimmerman, PA (2019) Human migration and the spread of the nematode parasite Wuchereria bancrofti. Molecular Biology and Evolution 36(9), 19311941. https://doi.org/10.1093/molbev/msz116.CrossRefGoogle ScholarPubMed
Taitt, CR, Leski, TA, Compton, JR, Chen, A, Berk, KL, Dorsey, RW, Sozhamannan, S, Dutt, DL and Vora, GJ (2024) Impact of template denaturation prior to whole genome amplification on gene detection in high GC-content species, Burkholderia mallei and B. pseudomallei. BMC Research Notes 17(1), 70. https://doi.org/10.1186/s13104-024-06717-8.CrossRefGoogle ScholarPubMed
Tantrawatpan, C, Tapdara, S, Agatsuma, T, Sanpool, O, Intapan, PM, Maleewong, W and Saijuntha, W (2021) Genetic differentiation of Southeast Asian Paragonimus Braun, 1899 (Digenea: Paragonimidae) and genetic variation in the Paragonimus heterotremus complex examined by nuclear DNA sequences. Infection, Genetics and Evolution 90, 104761. https://doi.org/10.1016/j.meegid.2021.104761.CrossRefGoogle ScholarPubMed
Thorn, CS, Maness, RW, Hulke, JM, Delmore, KE and Criscione, CD (2023) Population genomics of helminth parasites. Journal of Helminthology 97, e29. https://doi.org/10.1017/S0022149X23000123.CrossRefGoogle ScholarPubMed
Tsai, IJ, Hunt, M, Holroyd, N, Huckvale, T, Berriman, M and Kikuchi, T (2013) Summarizing Specific Profiles in Illumina Sequencing from Whole-Genome Amplified DNA. DNA Research 21(3), 243254. https://doi.org/10.1093/dnares/dst054.CrossRefGoogle ScholarPubMed
Umhang, G, Bastid, V, Avcioglu, H, Bagrade, G, Bujanić, M, Bjelić Čabrilo, O, Casulli, A, Dorny, P, van der Giessen, J, Guven, E, Harna, J, Karamon, J, Kharchenko, V, Knapp, J, Kolarova, L, Konyaev, S, Laurimaa, L, Losch, S, Miljević, M, Miterpakova, M, Moks, E, Romig, T, Saarma, U, Snabel, V, Sreter, T, Valdmann, H and Boué, F (2021) Unravelling the genetic diversity and relatedness of Echinococcus multilocularis isolates in Eurasia using the EmsB microsatellite nuclear marker. Infection, Genetics and Evolution 92, 104863. https://doi.org/10.1016/j.meegid.2021.104863.CrossRefGoogle ScholarPubMed
Vences, M, Miralles, A and Dufresnes, C (2024) Next-generation species delimitation and taxonomy: Implications for biogeography. Journal of Biogeography 51(9), 17091722. https://doi.org/10.1111/jbi.14807.CrossRefGoogle Scholar
Vilas, R, Criscione, CD and Blouin, MS (2005) A comparison between mitochondrial DNA and the ribosomal internal transcribed regions in prospecting for cryptic species of platyhelminth parasites. Parasitology 131(6), 839846.10.1017/S0031182005008437CrossRefGoogle ScholarPubMed
Vos, P, Hogers, R, Bleeker, M, Reijans, M, Tvd, Lee, Hornes, M, Friters, A, Pot, J, Paleman, J and Kuiper, M (1995) AFLP: A new technique for DNA fingerprinting. Nucleic Acids Research 23(21), 44074414.10.1093/nar/23.21.4407CrossRefGoogle ScholarPubMed
Welsh, J, Petersen, C and McClelland, M (1991) Polymorphisms generated by arbitrarily primed PCR in the mouse: Application to strain identification and genetic mapping. Nucleic Acids Research 19(2), 303306.10.1093/nar/19.2.303CrossRefGoogle ScholarPubMed
Wetterstrand, K (2023) Sequencing costs: Data from the NHGRI genome sequencing program (GSP). Available at www.genome.gov/sequencingcostsdata (accessed December 2024).Google Scholar
Williams, JG, Kubelik, AR, Livak, KJ, Rafalski, JA and Tingey, SV (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Research 18(22), 65316535.10.1093/nar/18.22.6531CrossRefGoogle ScholarPubMed
Supplementary material: File

Blasco-Costa supplementary material

Blasco-Costa supplementary material
Download Blasco-Costa supplementary material(File)
File 606.8 KB