Hostname: page-component-54dcc4c588-b5cpw Total loading time: 0 Render date: 2025-10-07T15:38:31.401Z Has data issue: false hasContentIssue false

Identification, sequence analysis, and expression profiles of Decapentaplegic (Dpp), a bone morphogenetic protein (BMP) in Fasciola gigantica

Published online by Cambridge University Press:  19 September 2025

C. Suwancharoen
Affiliation:
Division of Microbiology and Parasitology, School of Medical Sciences, University of Phayao, Phayao, Thailand
O. Japa*
Affiliation:
Division of Microbiology and Parasitology, School of Medical Sciences, University of Phayao, Phayao, Thailand Scientific Instrument and Product Standard Quality Inspection Center, University of Phayao, Phayao, Thailand
*
Corresponding author: O. Japa; Email: ornampai.ja@up.ac.th

Abstract

Bone Morphogenetic Proteins (BMPs) are a highly conserved family of proteins involved in a variety of biological processes and developmental pathways critical for proper growth and the maintenance of normal physiological functions in animals. However, the specific BMP-like ligand in Fasciola gigantica, a zoonotic liver fluke of major veterinary and public health importance, has not yet been clearly identified and fully characterized. In this report, we describe the molecular structure, key characteristics, evolutionary relationships, and expression patterns of F. gigantica Decapentaplegic (FgDpp), a putative member of the BMP family. The complete cDNA sequence of FgDpp was 3,765 bp in length and included a 2,811 bp coding sequence (CDS), which encodes a 936-amino-acid precursor protein. This precursor is predicted to undergo proteolytic processing to yield a 185-amino-acid mature peptide. Sequence analysis revealed two conserved domains characteristic of BMP family members: a TGF-β pro-peptide domain and a TGF-β domain containing seven conserved cysteine residues. Expression profiling across developmental stages showed that FgDpp is highly expressed in embryonated eggs and metacercariae, with minimal expression in unembryonated eggs, newly excysted juveniles (NEJs), and adult flukes. These findings contribute to the molecular characterization of FgDpp and suggest its potential involvement in early developmental regulation, offering a foundation for future functional studies and potential targets for parasite control strategies.

Information

Type
Research Paper
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Akiyama, T, Raftery, LA and Wharton, KA (2024) Bone morphogenetic protein signaling: The pathway and its regulation. Genetics 226(2). https://doi.org/10.1093/genetics/iyad200.CrossRefGoogle ScholarPubMed
Anderson, EN and Wharton, KA (2017) Alternative cleavage of the bone morphogenetic protein (BMP), Gbb, produces ligands with distinct developmental functions and receptor preferences. Journal of Biological Chemistry 292(47), 1916019178. https://doi.org/10.1074/jbc.M117.793513.CrossRefGoogle ScholarPubMed
Bandyopadhyay, A, Yadav, PS and Prashar, P (2013) BMP signaling in development and diseases: A pharmacological perspective. Biochemical Pharmacology 85(7), 857864. https://doi.org/10.1016/j.bcp.2013.01.004.CrossRefGoogle Scholar
Carreira, AC, Lojudice, FH, Halcsik, E, Navarro, RD, Sogayar, MC and Granjeiro, JM (2014) Bone morphogenetic proteins: Facts, challenges, and future perspectives. Journal of Dental Research 93(4), 335345. https://doi.org/10.1177/0022034513518561.CrossRefGoogle ScholarPubMed
Chen, L, Dong, C, Kong, S, Zhang, J, Li, X and Xu, P (2017) Genome wide identification, phylogeny, and expression of bone morphogenetic protein genes in tetraploidized common carp (Cyprinus carpio). Gene 627, 157163. https://doi.org/10.1016/j.gene.2017.06.020.CrossRefGoogle ScholarPubMed
Constam, DB and Robertson, EJ (1999) Regulation of bone morphogenetic protein activity by pro domains and proprotein convertases. Journal of Cell Biology 144(1), 139149. https://doi.org/10.1083/jcb.144.1.139.CrossRefGoogle ScholarPubMed
Duckert, P, Brunak, S and Blom, N (2004) Prediction of proprotein convertase cleavage sites. Protein Engineering, Design and Selection 17(1), 107112. https://doi.org/10.1093/protein/gzh013.CrossRefGoogle ScholarPubMed
Ducy, P and Karsenty, G (2000) The family of bone morphogenetic proteins. Kidney International 57(6), 22072214. https://doi.org/10.1046/j.1523-1755.2000.00081.x.CrossRefGoogle ScholarPubMed
Edgar, RC (2004) MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32(5), 17921797. https://doi.org/10.1093/nar/gkh340.CrossRefGoogle ScholarPubMed
Freitas, TC, Jung, E and Pearce, EJ (2009) A bone morphogenetic protein homologue in the parasitic flatworm, Schistosoma mansoni. International Journal for Parasitology 39(3), 281287. https://doi.org/10.1016/j.ijpara.2008.08.001.CrossRefGoogle ScholarPubMed
Goebel, EJ, Corpina, RA, Hinck, CS, Czepnik, M, Castonguay, R, Grenha, R, Boisvert, A, Miklossy, G, Fullerton, PT, Matzuk, MM, Idone, VJ, Economides, AN, Kumar, R, Hinck, AP and Thompson, TB (2019) Structural characterization of an activin class ternary receptor complex reveals a third paradigm for receptor specificity. Proceedings of the National Academy of Sciences of the United States of America 116(31), 1550515513. https://doi.org/10.1073/pnas.1906253116.CrossRefGoogle ScholarPubMed
Goldman, DC, Hackenmiller, R, Nakayama, T, Sopory, S, Wong, C, Kulessa, H and Christian, JL (2006) Mutation of an upstream cleavage site in the BMP4 prodomain leads to tissue-specific loss of activity. Development 133(10), 19331942. https://doi.org/10.1242/dev.02368.CrossRefGoogle ScholarPubMed
Gouy, M, Tannier, E, Comte, N and Parsons, DP (2021) Seaview Version 5: A multiplatform software for multiple sequence alignment, molecular phylogenetic analyses, and tree reconciliation. Methods in Molecular Biology 2231, 241260. https://doi.org/10.1007/978-1-0716-1036-7_15.CrossRefGoogle ScholarPubMed
Gray, AM and Mason, AJ (1990) Requirement for activin A and transforming growth factor--beta 1 pro-regions in homodimer assembly. Science 247(4948), 13281330. https://doi.org/10.1126/science.2315700.CrossRefGoogle ScholarPubMed
Gregory, KE, Ono, RN, Charbonneau, NL, Kuo, CL, Keene, DR, Bächinger, HP and Sakai, LY (2005) The prodomain of BMP-7 targets the BMP-7 complex to the extracellular matrix. Journal of Biological Chemistry 280(30), 2797027980. https://doi.org/10.1074/jbc.M504270200.CrossRefGoogle ScholarPubMed
Hall, T (1999) BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41, 9598.Google Scholar
Hall, T, Biosciences, I and Carlsbad, CJGBB (2011) BioEdit: An important software for molecular biology. GERF Bulletin of Biosciences 2(1), 6061.Google Scholar
Hinck, AP (2012) Structural studies of the TGF-βs and their receptors - insights into evolution of the TGF-β superfamily. FEBS Letters 586(14), 18601870. https://doi.org/10.1016/j.febslet.2012.05.028.CrossRefGoogle ScholarPubMed
Hinck, AP, Mueller, TD and Springer, TA (2016) Structural biology and evolution of the TGF-β family. Cold Spring Harbor Perspectives in Biology 8(12), a022103. https://doi.org/10.1101/cshperspect.a022103.CrossRefGoogle ScholarPubMed
Japa, O, Hodgkinson, JE, Emes, RD and Flynn, RJ (2015) TGF-β superfamily members from the helminth Fasciola hepatica show intrinsic effects on viability and development. Veterinary Research 46, 29. https://doi.org/10.1186/s13567-015-0167-2.CrossRefGoogle ScholarPubMed
Japa, O, Phuangsri, C, Klinbumrung, K and Prakhammin, K (2025) Receptor-regulated smads (R-Smads) in the liver fluke Fasciola gigantica: Characterization, comparative sequence analysis, and life stage-specific expression. Acta Tropica 264, 107603. https://doi.org/10.1016/j.actatropica.2025.107603.CrossRefGoogle ScholarPubMed
Japa, O, Phuangsri, C, Klinbumrung, K, Prakhammin, K and Flynn, RJ (2024) Detailed characterisation of the Co-Smad protein in liver fluke Fasciola gigantica. Journal of Helminthology 98, e93. https://doi.org/10.1017/S0022149X24000841.CrossRefGoogle Scholar
Japa, O, Prakhammin, K and Flynn, RJ (2022) Identification and expression of a transforming growth factor beta (TGF-β) homologue in the tropical liver fluke Fasciola gigantica. Parasitology Research 121(12), 35473559. https://doi.org/10.1007/s00436-022-07679-1.CrossRefGoogle ScholarPubMed
Katagiri, T and Watabe, T (2016) Bone morphogenetic proteins. Cold Spring Harbor Perspectives in Biology 8(6). https://doi.org/10.1101/cshperspect.a021899.CrossRefGoogle ScholarPubMed
Kishigami, S and Mishina, Y (2005) BMP signaling and early embryonic patterning. Cytokine & Growth Factor Reviews 16(3), 265278. https://doi.org/10.1016/j.cytogfr.2005.04.002.CrossRefGoogle ScholarPubMed
Kondo, M (2007) Bone morphogenetic proteins in the early development of zebrafish. The FEBS Journal 274(12), 29602967. https://doi.org/10.1111/j.1742-4658.2007.05838.x.CrossRefGoogle ScholarPubMed
Liu, R, Q-p, Zhao, Ye, Q, Xiong, T, C-l, Tang, H-f, Dong and M-s, Jiang (2013) Cloning and characterization of a bone morphogenetic protein homologue of Schistosoma japonicum. Experimental Parasitology 135(1), 6471. https://doi.org/10.1016/j.exppara.2013.05.016.CrossRefGoogle ScholarPubMed
Lochab, AK and Extavour, CG (2017) Bone Morphogenetic Protein (BMP) signaling in animal reproductive system development and function. Developmental Biology 427(2), 258269. https://doi.org/10.1016/j.ydbio.2017.03.002.CrossRefGoogle Scholar
Madamanchi, A, Mullins, MC and Umulis, DM (2021) Diversity and robustness of bone morphogenetic protein pattern formation. Development 148(7). https://doi.org/10.1242/dev.192344.CrossRefGoogle ScholarPubMed
Mas-Coma, S, Valero, MA and Bargues, MD (2023) One Health for fascioliasis control in human endemic areas. Trends in Parasitology 39(8), 650667. https://doi.org/10.1016/j.pt.2023.05.009.CrossRefGoogle ScholarPubMed
McVeigh, P, McCammick, EM, McCusker, P, Morphew, RM, Mousley, A, Abidi, A, Saifullah, KM, Muthusamy, R, Gopalakrishnan, R, Spithill, TW, Dalton, JP, Brophy, PM, Marks, NJ and Maule, AG (2014) RNAi dynamics in juvenile Fasciola spp. liver flukes reveals the persistence of gene silencing in vitro. PLOS Neglected Tropical Diseases 8(9), e3185. https://doi.org/10.1371/journal.pntd.0003185.CrossRefGoogle ScholarPubMed
Moxon, JV, LaCourse, EJ, Wright, HA, Perally, S, Prescott, MC, Gillard, JL, Barrett, J, Hamilton, JV and Brophy, PM (2010) Proteomic analysis of embryonic Fasciola hepatica: Characterization and antigenic potential of a developmentally regulated heat shock protein. Veterinary Parasitology 169(1), 6275. https://doi.org/10.1016/j.vetpar.2009.12.031.CrossRefGoogle ScholarPubMed
Mueller, TD and Nickel, J (2012) Promiscuity and specificity in BMP receptor activation. FEBS Letters 586(14), 18461859. https://doi.org/10.1016/j.febslet.2012.02.043.CrossRefGoogle ScholarPubMed
Pettersen, EF, Goddard, TD, Huang, CC, Couch, GS, Greenblatt, DM, Meng, EC and Ferrin, TE (2004) UCSF Chimera--a visualization system for exploratory research and analysis. Journal of Computational Chemistry 25(13), 16051612. https://doi.org/10.1002/jcc.20084.CrossRefGoogle ScholarPubMed
Powell, HR, Islam, SA, David, A and Sternberg, MJE (2025) Phyre2.2: A community resource for template-based protein structure prediction. Journal of Molecular Biology, 168960. https://doi.org/10.1016/j.jmb.2025.168960.CrossRefGoogle ScholarPubMed
Savage-Dunn, C and Padgett, RW (2017) The TGF-β Family in Caenorhabditis elegans. Cold Spring Harbor Perspectives in Biology 9(6). https://doi.org/10.1101/cshperspect.a022178.CrossRefGoogle ScholarPubMed
Siles-Lucas, M, Becerro-Recio, D, Serrat, J and González-Miguel, J (2021) Fascioliasis and fasciolopsiasis: Current knowledge and future trends. Research in Veterinary Science 134, 2735. https://doi.org/10.1016/j.rvsc.2020.10.011.CrossRefGoogle ScholarPubMed
Silver, N, Best, S, Jiang, J and Thein, SL (2006) Selection of housekeeping genes for gene expression studies in human reticulocytes using real-time PCR. BMC Molecular Biology 7(1), 33. https://doi.org/10.1186/1471-2199-7-33.CrossRefGoogle Scholar
Tamura, K, Stecher, G and Kumar, S (2021) MEGA11: Molecular evolutionary genetics analysis version 11. Molecular Biology and Evolution 38(7), 30223027. https://doi.org/10.1093/molbev/msab120.CrossRefGoogle ScholarPubMed
Teufel, F, Almagro Armenteros, JJ, Johansen, AR, Gíslason, MH, Pihl, SI, Tsirigos, KD, Winther, O, Brunak, S, von Heijne, G and Nielsen, H (2022) SignalP 6.0 predicts all five types of signal peptides using protein language models. Nature Biotechnology 40(7), 10231025. https://doi.org/10.1038/s41587-021-01156-3.CrossRefGoogle ScholarPubMed
Van der Zee, M, da Fonseca, RN and Roth, S (2008) TGFbeta signaling in Tribolium: Vertebrate-like components in a beetle. Development Genes and Evolution 218(3–4), 203213. https://doi.org/10.1007/s00427-007-0179-7.CrossRefGoogle Scholar
Wang, RN, Green, J, Wang, Z, Deng, Y, Qiao, M, Peabody, M, Zhang, Q, Ye, J, Yan, Z, Denduluri, S, Idowu, O, Li, M, Shen, C, Hu, A, Haydon, RC, Kang, R, Mok, J, Lee, MJ, Luu, HL and Shi, LL (2014) Bone Morphogenetic Protein (BMP) signaling in development and human diseases. Genes & Diseases 1(1), 87105. https://doi.org/10.1016/j.gendis.2014.07.005.CrossRefGoogle ScholarPubMed
Wotton, KR, Alcaine Colet, A, Jaeger, J and Jimenez-Guri, E (2013) Evolution and expression of BMP genes in flies. Development Genes and Evolution 223(5), 335340. https://doi.org/10.1007/s00427-013-0445-9.CrossRefGoogle ScholarPubMed
Wu, D, Kong, X, Zhang, W and Di, W (2023) Reconstruction of the TGF-β signaling pathway of Fasciola gigantica. Parasitololy Research 123(1), 51. https://doi.org/10.1007/s00436-023-08064-2.CrossRefGoogle ScholarPubMed
Zhang, Y, Yu, J, Han, R, Ma, Z, Zhang, M, Li, Y, Tang, Y, Nie, G and Zhou, C (2024) Genome-wide identification and structural analysis of the BMP gene family in Triplophysa dalaica. BMC Genomics 25(1), 194. https://doi.org/10.1186/s12864-024-10049-z.CrossRefGoogle ScholarPubMed