Hostname: page-component-5b777bbd6c-v47t2 Total loading time: 0 Render date: 2025-06-19T01:24:56.790Z Has data issue: false hasContentIssue false

First report of Jurassic Anomura (Galatheoidea) and Brachyura (Dromiacea, Goniodromitidae) in Russia

Published online by Cambridge University Press:  16 June 2025

Eduard V. Mychko
Affiliation:
Shirshov Institute of Oceanology, Russian Academy of Sciences, Nahimovskiy Prospekt 36, Moscow 117997, Russia A.N. Severtsov Institute of Ecology and Evolution, Leninsky Prospect 33, Moscow 119071, Russia Institute of Living Systems, Immanuel Kant Baltic Federal University, Nevskogo Street 14, Kaliningrad 236016, Russia Borissiak Paleontological Institute, Russian Academy of Sciences, Profsoyuznaya Street 123, Moscow 117647, Russia
Carrie E. Schweitzer*
Affiliation:
Department of Earth Sciences, Kent State University at Stark, North Canton, Ohio 44720, USA
Rodney M. Feldmann
Affiliation:
Department of Earth Sciences, Kent State University, Kent, Ohio 44242, USA
*
Corresponding author: Carrie E. Schweitzer; Email: cschweit@kent.edu

Abstract

This is the first report of Jurassic brachyurans and anomurans from the territory of Russia. These findings come from the Upper Jurassic (Oxfordian) reef limestones of the North Caucasus. The anomuran Gastrosacus wetzleri von Meyer, 1851 was collected from the locality near the Urup River and is the first find of this species outside of western Europe. The dromiacean crab, Goniodromites aliquantulus Schweitzer, Feldmann, and Lazăr, 2007, was discovered from another locality near the Kamennomostsky village. This species was first described from the Oxfordian of Romania. Findings of fossil remains of Goniodromites aliquantulus and Gastrosacus wetzleri from the Oxfordian of the North Caucasus indicate an interconnected paleobiogeographical community of decapod faunas in the Late Jurassic in the Tethys basins.

Type
Articles
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0), which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited.
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Paleontological Society

Non-technical Summary

This is the first report of Jurassic crabs and their relatives, the squat lobsters, from the territory of Russia. These findings come from the Upper Jurassic (Oxfordian) reef limestones of the North Caucasus. The squat lobster Gastrosacus wetzleri von Meyer, Reference von Meyer1851, collected from the locality near the Urup River, is the first find of this species outside of western Europe. The crab Goniodromites aliquantulus Schweitzer, Feldmann, and Lazăr, Reference Schweitzer, Feldmann and Lazăr2007 was discovered from another locality near the Kamennomostsky village. This species was first described from the Oxfordian of Romania. These fossil remains from the Oxfordian of the North Caucasus indicate an interconnected marine community of crabs and squat lobsters in the Late Jurassic in the Tethys basins.

Introduction

Few localities of Mesozoic fossils of Anomura and Brachyura from the vast territory of Russia have been described (Table 1). Species of Brachyura known from the Cretaceous of the Moscow Oblast (region of Central Russia including the Albian [Gavrilkovо Formation]), Homolopsis glabra Wright and Collins, Reference Wright and Collins1972 and Personadorippe kalashnikovi Van Bakel et al., Reference Van Bakel, Mychko, Spiridonov, Jagt and Fraaije2021, and Necrocarcinus gorbenkoi Mychko et al., Reference Mychko, Schweitzer, Feldmann and Shmakov2023 described from Cenomanian rocks (Lyamino Formation) (Ilyin, Reference Ilyin2005; Van Bakel et al., Reference Van Bakel, Mychko, Spiridonov, Jagt and Fraaije2021; Mychko et al., Reference Mychko, Schweitzer, Feldmann and Shmakov2023). The only record of Anomura from this region comes from Jurassic deposits (Volgian [= Tithonian]), by the remains of a hermit crab (Paguroidea gen. indet. sp. indet.) of poor preservation in an ammonite shell (Mironenko, Reference Mironenko2020). A unique hermit crab, Mutotylaspis tripudium Fraaije et al., Reference Fraaije, Mychko, Barsukov and Jagt2024, was recently described from a neighboring region, the Vladimir Oblast. It was discovered from an almost complete carapace and appendages found in a concretion in Lower Cretaceous (Albian) rocks (Fraaije et al., Reference Fraaije, Mychko, Barsukov and Jagt2024). The assemblage of Lower Cretaceous crabs from Dagestan is quite interesting and includes Levashidromites cornutus Van Bakel et al., Reference Van Bakel, Mychko, Spiridonov, Jagt and Fraaije2021, Personadorippe levashiensis Van Bakel et al., Reference Van Bakel, Mychko, Spiridonov, Jagt and Fraaije2021, and Vectis collinsi Van Bakel et al., Reference Van Bakel, Mychko, Spiridonov, Jagt and Fraaije2021, fossil remains of which were discovered in Aptian deposits (Van Bakel et al., Reference Van Bakel, Mychko, Spiridonov, Jagt and Fraaije2021). The Cretaceous of Crimea contains a relatively high number of crab remains, which were found in various geological formations. The oldest species is Abyssophthalmus (?) dzhafarberdensis (Ilyin, Reference Ilyin2005), described from deposits of the Upper Jurassic (Upper Tithonian)–Lower Cretaceous (Lower Berriasian) boundary (Ilyin, Reference Ilyin2005; Klompmaker et al., Reference Klompmaker, Starzyk, Fraaije and Schweigert2020). Albian crabs are represented by Necrocarcinus bodrakensis Levitskiy, Reference Levitskiy1974, Necrocarcinus tauricus Ilyin and Alekseev, Reference Ilyin and Alekseev1998, and Macroacaena yanini (Ilyin and Alekseev, Reference Ilyin and Alekseev1998) (Levitskiy, Reference Levitskiy1974; Ilyin and Alekseev, Reference Ilyin and Alekseev1998; Ilyin, Reference Ilyin2005; Van Bakel et al., Reference Van Bakel, Mychko, Spiridonov, Jagt and Fraaije2021). Cenomanian crabs are represented only by Notopocorystes normani (Bell, Reference Bell1863) (Ilyin, Reference Ilyin2005). Anomurans of Crimea are found in the Lower Cretaceous (Valanginian–Hauterivian) and are represented by the remains of Orhomalus tombecki (de Tribolet, Reference de Tribolet1875), Palaeopagurus couloni (de Tribolet, Reference de Tribolet1874), and Palaeopagurus? sp. indet. (Levitskiy, Reference Levitskiy1974; Ilyin, Reference Ilyin2005; Ul’shin et al., Reference Ul’shin, Tishchenko and Pologov2020). Recently, the authors of this paper described a new brachyuran species, Silvacarcinus cisuralicus Mychko et al., Reference Mychko, Schweitzer and Feldmann2024, from the Upper Cretaceous (Campanian) in the Orenburg Oblast (Mychko et al., Reference Mychko, Schweitzer and Feldmann2024).

Table 1. Mesozoic brachyuran and anomuran occurrences from Russia. For other generic occurrence references, consult Schweitzer et al. (Reference Schweitzer, Feldmann, Karasawa and Seldon2012, Reference Schweitzer, Feldmann, Karasawa, Klompmaker, Robins and Seldon2023)

This is the first scientific publication on Jurassic brachyurans and anomurans from Russia. Geographically, the closest region to Russia with Jurassic (Callovian) crabs was Lithuania, from which the species Tanidromites lithuanicus Schweigert and Koppka, Reference Schweigert and Koppka2011 was described.

Jurassic brachyurans and anomurans are abundant and diverse from European localities and have received considerable attention in recent years. Jurassic brachyuran and anomuran localities in southern Germany include localities of the Pliensbachian (Förster, Reference Förster1986; Schweigert et al., Reference Schweigert, Fraaije, Nützel and Havlik2013), Middle Callovian (Pleistocene glacial boulder; Schweigert and Koppka, Reference Schweigert and Koppka2011), Kimmeridgian (Dietl and Schweigert, Reference Dietl and Schweigert2001; Garassino et al., Reference Garassino, De Angeli and Schweigert2005; Van Bakel et al., Reference Van Bakel, Fraaije, Jagt and Artal2008; Feldmann and Schweitzer, Reference Feldmann and Schweitzer2009; Schweigert and Koppka, Reference Schweigert and Koppka2011; Lang et al., Reference Lang, Gründel, Jäger, Löser, Schlampp, Schneider and Werner2017; Schweigert, Reference Schweigert2021), and Tithonian (Paulsen, Reference Paulsen1964; Garassino et al., Reference Garassino, De Angeli and Schweigert2005). Jurassic crabs from France are represented by several localities from the Middle and Upper Jurassic. A detailed list of these taxa and their localities in this region has been provided in several recent following works (Krobicki and Zatoń, Reference Krobicki and Zatoń2008; Van Bakel and Guinot, Reference Van Bakel and Guinot2023). Anomurans and brachyurans have been described from the Bajocian of northern Switzerland (Förster, Reference Förster1985). Oxfordian and Kimmeridgian brachyurans from Switzerland were also reported (Étallon, Reference Étallon1859, Reference Étallon1861). In northeastern Italy, the remains of crabs have been discovered and are confined to the Oxfordian–Kimmeridgian limestones of the Fonzaso Formation (De Angeli and Garassino, Reference De Angeli and Garassino2006). Dromiacean crabs are reported from Lower Callovian deposits in Austria (Krobicki and Zatoń, Reference Krobicki and Zatoń2008, Reference Krobicki and Zatoń2016; Stolley, Reference Stolley1914). A high diversity of Anomura and Brachyura has been found in the Tithonian (Ernstbrunn Limestone) in Austria, documented in several works (Bachmayer, Reference Bachmayer1947; Schweitzer and Feldmann, Reference Schweitzer and Feldmann2009; Schweitzer et al., Reference Schweitzer, Feldmann, Karasawa and Seldon2012, Reference Schweitzer, Feldmann, Karasawa, Klompmaker, Robins and Seldon2023; Robins et al., Reference Robins, Feldmann and Schweitzer2013). Pliensbachian, Aalenian, and Bathonian brachyurans and anomurans have been reported from England (Woodward, Reference Woodward1868, Reference Woodward1907; Withers, Reference Withers1932; Krobicki and Zatoń; Reference Krobicki and Zatoń2008).

From eastern Europe, there are a number of localities of Jurassic anomurans and brachyurans in southern Poland. These localities are represented by Bajocian and Bathonian (Krobicki and Zatoń, Reference Krobicki and Zatoń2008), Callovian (Krobicki and Zatoń, Reference Krobicki and Zatoń2008), Oxfordian (Collins and Wierzbowski, Reference Collins and Wierzbowski1985; Trammer, Reference Trammer1989; Garassino and Krobicki, Reference Garassino and Krobicki2002; Van Bakel et al., Reference Van Bakel, Fraaije, Jagt and Artal2008; Starzyk et al., Reference Starzyk, Krzemińska and Krzemiński2012), and Tithonian rocks (Patrulius, Reference Patrulius1966; Schweitzer et al., Reference Schweitzer, Feldmann, Karasawa and Seldon2012, Reference Schweitzer, Feldmann, Karasawa, Klompmaker, Robins and Seldon2023). From Slovakia, brachyurans and anomurans were described from Middle Oxfordian limestones (Hyžný et al., Reference Hyžný, Schlögl and Krobicki2011); anomurans were also described from the Kimmeridgian–Tithonian of Slovenia (Gašparič et al., Reference Gašparič, Robins and Gale2020). Several Tithonian anomuran and brachyuran localities are known from the Czech Republic, notably from the Štramberk Limestones (Moericke, Reference Moericke1889; Blaschke, Reference Blaschke1911; Kummel, Reference Kummel1956; Bachmayer, Reference Bachmayer1959; Schweitzer and Feldmann, Reference Schweitzer and Feldmann2009; Schweitzer et al., Reference Schweitzer, Feldmann, Karasawa and Seldon2012, Reference Schweitzer, Feldmann, Karasawa, Klompmaker, Robins and Seldon2023). A large number of localities and taxa of Jurassic decapods (Anomura and Brachyura) come from Romania, including Oxfordian (Feldmann et al., Reference Feldmann, Lazăr and Schweitzer2006; Schweitzer et al., Reference Schweitzer, Feldmann and Lazăr2007; Franţescu, Reference Franţescu2011), Oxfordian–Kimmeridgian (Schweitzer et al., Reference Schweitzer, Lazăr, Feldmann, Stoica and Franţescu2017), and Tithonian deposits (Patrulius, Reference Patrulius1959; Muţiu and Bădăluţă, Reference Muţiu and Bădăluţă1971; Schweitzer et al., Reference Schweitzer, Feldmann, Karasawa and Seldon2012, Reference Schweitzer, Feldmann, Karasawa, Klompmaker, Robins and Seldon2023; Robins et al., Reference Robins, Feldmann, Schweitzer and Bonde2016).

The easternmost findings of Jurassic crabs are confined to China and Japan. From China, crabs are known from Tibet (Zhamunaqu Formation; Smith and Xu, Reference Smith and Xu1988). Dromiacean crabs have been found in the Upper Kimmeridgian–Lower Tithonian sandstones of the Nakanosawa Formation in Japan (Kato et al., Reference Kato, Takahashi and Taira2010) and several Upper Jurassic species of prosopid crabs are known from Torinosu Group (Karasawa and Kato, Reference Karasawa and Kato2007).

The southernmost Jurassic brachyurans were discovered in the Bajocian Lugoba Formation in Tanzania and are represented by a number of taxa, including Prosopon sp. indet., Gabriella lugobaensis (Förster, Reference Förster1985), and others (Förster, Reference Förster1985; Krobicki and Zatoń, Reference Krobicki and Zatoń2008).

This brief overview of Jurassic decapod anomuran and brachyuran occurrences demonstrates that although they are known from most areas of Europe, occurrences in Russia have until now been absent. This report fills this gap in knowledge of these organisms and establishes that the Russian fauna has close affinities with those of southeastern Europe.

Locality and geological setting

The decapod fossils described in this paper were found in two localities located in the Adygea Republic and Krasnodar Krai (Fig. 1). These localities are both confined to outcrops of Oxfordian limestone, which is common in the region.

Figure 1. Localities of described decapods of North Caucasus: (1) schematic map of the Eastern Hemisphere; (2) schematic map of the Caucasus and Transcaucasia; (3) terrain map of the North Caucasus with localities (4) and (5) (Republic of Adygea and Krasnodar Krai, Russia); (4) Dachovskaya–Kamennomostsky, Oxfordian limestone near the Kamennomostsky village (photo by D. Kiselev); (5) Urup River, Oxfordian limestone on Bolshoi Zelenchuk River (photo by M. Sukhot’ko).

Dachovskaya–Kamennomostsky (Fig. 1.4)

In the Belaya River Valley, between the Guzeripl’ village and the Kamennomostsky village, rich fossil remains of Callovian and Oxfordian deposits have been found. There, south of the Kamennomostsky village, near the recreation center ‘Chalet Dakh’ (Fig. 1.4; 44°16’08.2"N, 40°13’22.4"E, WGS84), in crushed limestone, amateur paleontologist Ksenia Belikova from 24–26 July 2023 discovered fossils of various invertebrates (Fig. 2.5, 2.6) including crab carapaces. The crushed stone was extracted from limestones exposed in the Belaya River Valley and mined in a quarry south of the Kamennomostsky village.

Coral limestones were first discovered and described there by Nikshich in 1915. In that work, he indicated the presence of three ‘zones’ with fauna: (1) light-colored coralline limestone with various bivalves, brachiopods, and corals; (2) layered yellow limestone almost devoid of fossils; (3) limestone with flint nodules and remains of sponges, brachiopods, crinoids, and sea urchins, as well as ammonites (Nikshich, Reference Nikshich1915, p. 517).

The most recent and complete description of these deposits near the Kamennomostsky village was made by Lominadze in 1982. He identified six layers (Lominadze, Reference Lominadze1982, fig. 64), of which there are four Callovian terrigenous layers and two early Oxfordian limestone layers. Lominadze (Reference Lominadze1982) noted a large number of ammonite shells in the deposits under discussion.

Later authors (Kiselev et al., Reference Kiselev, Rogov, Glinskikh, Guzhikov, Pimenov, Mikhailov, Dzyuba, Matveev and Tesakova2013) noted that ammonites from these deposits have never been depicted. Kiselev (Reference Kiselev2022) provided a brief description of the Callovian-Oxfordian boundary section studied in several outcrops along the road running west of the Belaya River from the Kamennomostsky village and the Dakhovskaya village to the Lago-Naki Plateau. In that work, it was noted that Layer 3, represented by light-colored limestone with abundant remains of sponges, solitary corals, serpulids, terebratulides, and sea urchins, contains remains of the ammonite Cardioceras (Scarburgiceras) scarburgense (Young and Bird, Reference Young and Bird1828). According to this ammonite species, Layer 3 can be attributed to the lowest biostraton of the Oxfordian stage—the scarburgense biohorizon. Above Layer 3 there is a multimeter layer of rhythmically alternating sponge-algal limestones and silts, in which no ammonites were found (Kiselev, Reference Kiselev2022, p. 336).

Urup River (Fig. 1.5)

In the area of the Gusarovskoye village (44°34’56.194"N, 41°24’57.485"E, WGS84) on the Urup River, in crushed limestone (as in the first locality), amateur paleontologist Maxim Sukhot’ko discovered fossil remains of Jurassic invertebrates in 2020, including the anomuran carapace described in this paper, as well as, later, the brachyuran Goniodromites aliquantulus Schweitzer, Feldmann, and Lazǎr, Reference Schweitzer, Feldmann and Lazăr2007, the same species as from the previous locality (Dachovskaya–Kamennomostsky) on the Belaya River. The place of extraction of this crushed stone is located near the Bolshoi Zelenchuk River.

Upper Callovian–Oxfordian bioherms are widely developed in this region. They are separated by beds of layered limestone, often alternating with marls, and due to their massive composition, they are clearly distinguished in relief (Loginova, Reference Loginova1964). According to Rostovtsev et al. (Reference Rostovtsev, Agajev, Azarjan, Babajev and Beznosov1992), these deposits are included in the Herpegem Formation. At the base of the Herpegem Formation lies a basal horizon of limestone conglomerates and brecciated limestones, which to the east of the watershed of the Bolshaya Laba and Urup rivers is mixed with sandstones and gravelites. Above it is a layer of limestone, underlain by interlayers of marls, and in the middle part there are massive dolomitized limestones, which in places contain large reef bioherms mentioned by Loginova (Reference Loginova1964). These reef bodies often contain corals, brachiopods, ammonites, and other fossil fauna (Figs. 2.1–4).

Materials and methods

Abbreviations

CaW = width of cardiac region; CL = maximum carapace length; CW = maximum carapace width; GH = length of gastric region; GW = width of the gastric region; L = length of carapace excluding rostrum; LR = total length of carapace including rostrum; MW = maximum mesogastric width; OW = orbital width; PW = posterior width; R = length of rostrum; RW = rostral width; TW = total width of anterior margin; UW = width of urogastric region; W = maximum width.

Repositories and institutional abbreviations

MWO = Museum of the World Ocean, Kaliningrad, Russia; LPBIIIart = Laboratory of Paleontology, Department of Geology and Paleontology, University of Bucharest, Romania; SNSB-BSPG = Bayerische Staatssammlung für Paläontologie und Historische Geologie, München (Munich), Germany.

Systematic paleontology

We follow the classification published in Treatise Online for Dromiacea and Galatheoidea (Schweitzer et al., Reference Schweitzer, Feldmann, Karasawa and Seldon2012, Reference Schweitzer, Feldmann, Karasawa, Klompmaker, Robins and Seldon2023, respectively).

Order Decapoda Latreille, Reference Latreille1802

Infraorder Anomura MacLeay, Reference MacLeay1838

Superfamily Galatheoidea Samouelle, Reference Samouelle1819

Family Munidopsidae Ortmann, Reference Ortmann and Bronn1898

Genus Gastrosacus von Meyer, Reference von Meyer1851

Type species

Gastrosacus wetzleri von Meyer, Reference von Meyer1851.

Other species

Gastrosacus aequabus Robins et al., Reference Robins, Feldmann and Schweitzer2013; Gastrosacus carteri Van Straelen, Reference Van Straelen1925; Gastrosacus eminens (Blaschke, Reference Blaschke1911), originally as Galathea Fabricius, Reference Fabricius1793; Gastrosacus ernstbrunnensis Bachmayer, Reference Bachmayer1947; Gastrosacus? latirostris (Beurlen, Reference Beurlen1929), originally as Gastrosacus; Gastrosacus levocardiacus Robins et al., Reference Robins, Feldmann and Schweitzer2013; Gastrosacus limacurvus Robins et al., Reference Robins, Feldmann and Schweitzer2013; Gastrosacus meyeri (Moericke, Reference Moericke1889), originally as Galathea; Gastrosacus pisinnus Robins et al., Reference Robins, Feldmann and Schweitzer2013; Gastrosacus raboeufi Fraaije et al., Reference Fraaije, Van Bakel, Jagt, Charbonnier and Pezy2019; Gastrosacus robineaui (de Tribolet, Reference de Tribolet1874); Gastrosacus straeleni (Ruiz de Gaona, Reference Ruiz de Gaona1943); Gastrosacus torosus Robins et al., Reference Robins, Feldmann and Schweitzer2013; Gastrosacus tuberosiformis (Lörenthey in Lörenthey and Beurlen, Reference Lörenthey and Beurlen1929), originally as Galatheites Balss, Reference Balss1913; Gastrosacus tuberosus (Remeš, Reference Remeš1895), originally as Galathea; and Gastrosacus ubaghsi (Pelseneer, Reference Pelseneer1886), originally as Galathea.

Diagnosis

As by Robins et al. (Reference Robins, Feldmann and Schweitzer2013, p. 181).

Gastrosacus wetzleri von Meyer, Reference von Meyer1851

Figure 3

Reference von Meyer1851 Gastrosacus wetzleri von Meyer, p. 677.

Reference von Meyer1854 Gastrosacus wetzleri; von Meyer, p. 51, pl. 10, figs. 3, 4.

Reference Quenstedt1857 Prosopon aculeatum von Meyer, Reference von Meyer1857; Quenstedt, p. 779, pl. 95, figs. 46–47.

Reference von Meyer1860 Gastrosacus wetzleri; von Meyer, p. 219, 220, pl. 23, fig. 34.

Reference Quenstedt1868 Prosopon aculeatum; Quenstedt, p. 315, pl. 26, fig. 14.

Reference Carter1898 Gastrosacus wetzleri; Carter, p. 18, pl. i, fig. 3a, b.

Reference Van Straelen1925 Gastrosacus Carteri ‘von Meyer, Reference von Meyer1851’; Van Straelen, p. 299, 300, fig. 135.

Reference Van Straelen1925 Gastrosacus Wetzleri; Van Straelen, p. 300.

Reference Klompmaker, Artal, Fraaije and Jagt2011 Gastrosacus wetzleri; Klompmaker et al., p. 228.

Reference Robins, Feldmann and Schweitzer2013 Gastrosacus wetzleri; Robins et al., p. 167, 168, 179, 181, 182, 184, 188, 226, 242, 243, pls. 6.11, 7.1.

Reference Robins, Feldmann and Schweitzer2013 Gastrosacus carteri Van Straelen, Reference Van Straelen1925; Robins et al., p. 184, fig. 7.9.

Reference Fraaije2014 Gastrosacus wetzleri; Fraaije, p. 123, fig. 3A–C.

Reference Robins, Fraaije, Klompmaker, Van Bakel and Jagt2015 Gastrosacus wetzleri; Robins et al., p. 87–89, figs. 2, 3.

Figure 2. Fossil remains from deposits with described decapods of North Caucasus: (1–4) collected from locality near Urup River: (1, 2) bivalves, MWO 1 no. 12877, 12878; (3) terebratulid brachiopod, MWO 1 no. 12874; (4), rhynchonellid brachiopod, MWO 1 no. 12880; (5, 6) collected from locality near the Kamennomostsky village: (5) fragment of hexacoral, MWO 1 no. 12873; (6) serpulid annelid worm, MWO 1 no. 12879. Scale bars = 1 cm.

Figure 3. Gastrosacus wetzleri von Meyer, Reference von Meyer1851, almost complete carapace, MWO 1 no. 12876, from crushed limestone near the Urup River, district of the Gusarovskoye village, Krasnodar Krai, Russia; Oxfordian, Upper Jurassic: (1) dorsal view; (2) left lateral view; (3) the specimen in the rock; (4) schematic of carapace morphology. Scale bars = 5 mm (1, 2).

Reference Schweitzer, Feldmann, Karasawa, Klompmaker, Robins and Seldon2023 Gastrosacus wetzleri; Schweitzer et al., p. 14, fig. 8.5

Neotype

An almost complete carapace, SNSB-BSPG IX 683; uppermost Kimmeridgian, Upper Jurassic; Oerlinger Tal near Ulm, Germany; designated by Robins et al. (Reference Robins, Fraaije, Klompmaker, Van Bakel and Jagt2015, p. 89).

Diagnosis

As by Robins et al. (Reference Robins, Fraaije, Klompmaker, Van Bakel and Jagt2015, p. 87).

Occurrence

Upper Kimmeridgian (see Robins et al., Reference Robins, Fraaije, Klompmaker, Van Bakel and Jagt2015) of Germany–Oxfordian of England (see Carter, Reference Carter1898; Robins et al., Reference Robins, Fraaije, Klompmaker, Van Bakel and Jagt2015) and Russia (crushed limestone near the Urup River, near the Gusarovskoye village, Krasnodar Krai; the limestone was extracted near the Bol’shoy Zelenchuk River in the Krasnodar Krai).

Description

Carapace longitudinally subrectangular, tapering very slightly from posterior to anterior, weakly convex longitudinally and transversely, CL/TW 1.7, CL/MW 1.29. Rostrum relatively wide, long in proportion to carapace, slightly deflected downward; keel of rostrum high, visible; lateral margins of rostrum angling slightly toward each other, converging to a point; lateral edges limited by groove and swelling. Orbital margin rimmed. Carapace bearing triangular outer orbital spine, small, curved toward rostrum. Several small spines on orbital margin. Lateral margin straight with at least 16 very small spines; these sharp, curved toward anterior carapace. Circumgastric groove pronounced, deep, separating urogastric from mesogastric region. Groove horizontal in central part, but curving forward at epibranchial furrow. There, circumgastric groove dividing into hepatic branch posteriorly and epibranchial branch anteriorly. Hepatic branch continuation of circumgastric groove, more obvious and deeper than epibranchial branch. Tubercles round and large in anterior mesogastric region, flattened in posterior mesogastric region, turning into wrinkled texture. Epigastric and protogastric regions small, steep, separated by barely noticeable groove not reaching middle regions. Hepatic region very small, flattened. Epibranchial region behind it much larger, wedge-shaped.

Surface of carapace on epibranchial, hepatic, epigastric, and protogastric regions covered with large tubercles. Largest tubercles located toward lateral margin and closer to rostrum. Urogastric region very narrow, widening slightly laterally, separated from cardiac region by faint groove; surface covered with small transversely oblong tubercles, more reminiscent of wrinkles. Mesobranchial regions subrectangular, small. Cardiac region flattened, subcrescent shaped, larger than urogastric. Branchial regions very large, covered with oblong tubercles. Posterior margin possibly rimmed with concave inflection. Ventral surface and appendages not preserved.

Material examined

An almost complete carapace, MWO 1 no. 12876.

Measurements (in mm)

LR 11.5; L 8.8; R 2.7; GH 4.1; RW 2.7; OW 4.8; TW 5.3; GW 5.6; UW 3.9; CaW 4; W 6.8; L/W 1.29; L/TW 1.7.

Remarks

This specimen is very similar to various specimens of Gastrosacus wetzleri from the Upper Jurassic of Germany, including the neotype, in its carapace ornamentation and the shape of the rostrum.

Infraorder Brachyura Linnaeus, Reference Linnaeus1758

Section Dromiacea De Haan, Reference De Haan and von Siebold1833

Superfamily Homolodromioidea Alcock, Reference Alcock1900

Family Goniodromitidae Beurlen, Reference Beurlen1932

Genus Goniodromites Reuss, Reference Reuss1858

Type species

Goniodromites bidentatus Reuss, Reference Reuss1858, by subsequent designation (Glaessner, Reference Glaessner and Pompeckj1929).

Other species

Goniodromites aliquantulus Schweitzer, Feldmann, and Lazǎr, Reference Schweitzer, Feldmann and Lazăr2007; Goniodromites complanatus Reuss, Reference Reuss1858; Goniodromites cenomanensis (Wright and Collins, Reference Wright and Collins1972); Goniodromites dacica (von Mücke, Reference von Mücke1915); Goniodromites dentatus Lörenthey in Lörenthey and Beurlen, Reference Beurlen1929; Goniodromites hirotai Karasawa and Kato, Reference Karasawa and Kato2007; Goniodromites kubai Starzyk et al., Reference Starzyk, Krzemińska and Krzemiński2012; Goniodromites laevis (Van Straelen, Reference Van Straelen1940); Goniodromites narinosus Franţescu, Reference Franţescu2011; Goniodromites polyodon Reuss, Reference Reuss1858; Goniodromites sakawense Karasawa and Kato, Reference Karasawa and Kato2007; Goniodromites transsylvanicus (Lörenthey in Lörenthey and Beurlen, Reference Beurlen1929).

Diagnosis

As by Schweitzer et al. (Reference Schweitzer, Feldmann, Karasawa and Seldon2012, p. 4).

Goniodromites aliquantulus Schweitzer, Feldmann, and Lazǎr, Reference Schweitzer, Feldmann and Lazăr2007

Figure 4

Figure 4. Goniodromites aliquantulus Schweitzer, Feldmann, and Lazǎr, Reference Schweitzer, Feldmann and Lazăr2007, collected from crushed limestone near the Kamennomostsky village, Maikop district, Republic of Adygea, Russia; Oxfordian, Upper Jurassic: (1–4) MWO 1 no. 12875-1: (1) dorsal view; (2) anterior view; (3) left lateral view; (4) the specimen in the rock; (5–7) MWO 1 no. 12875-2: (5) dorsal view; (6) right lateral view; (7) the specimen in the rock; (8) schematic of carapace morphology. Scale bar = 5 mm.

Reference Schweitzer, Feldmann and Lazăr2007 Goniodromites aliquantulus Schweitzer, Feldmann, and Lazǎr, p. 107, fig. 4.1.

Reference Schweitzer and Feldmann2007b Goniodromites aliquantulus; Schweitzer and Feldmann, p. 126, fig. 2G.

Reference Schweitzer, Feldmann and Lazǎr2009 Goniodromites aliquantulus; Schweitzer et al., p. 6.

Reference Schweitzer, Feldmann, Garassino, Karasawa and Schweigert2010 Goniodromites aliquantulus; Schweitzer et al., p. 59.

Reference Starzyk, Krzemińska and Krzemiński2012 Goniodromites aliquantulus; Starzyk et al., p. 145.

Reference Hyžný, Starzyk, Robins and Kočová Veselská2015 Goniodromites aliquantulus; Hyžný et al., p. 639.

Holotype

An almost complete carapace, LPBIIIart 0150; Oxfordian, Upper Jurassic; WP123, Gura Dobrogei, Romania; by original designation.

Diagnosis

As by Schweitzer et al. (Reference Schweitzer, Feldmann and Lazăr2007, p. 107, 108).

Occurrence

Oxfordian, Upper Jurassic; crushed limestone near the Kamennomostsky village, Maikop district, Republic of Adygea, Russia, as well as Gura Dobrogea (Schweitzer et al., Reference Schweitzer, Feldmann and Lazăr2007).

Description

Carapace hexagonal, elongated, narrowing anteriorly and posteriorly. Greatest width of carapace occuring in epibranchial regions. Cephalic region, measured from anterior to cervical groove along midline, constituting half of total carapace length. Rostrum bilobed, wide; frontal margins continuous with orbital margin. Outer-orbital angle as well-developed spine. Outer orbital edge with row of small spines. Second large spine posterior to outer-orbital spine. Margins of epibranchial regions each containing four small spines. Margins of branchial regions in anterior part with small spines, at least six but total number unknown. Cervical groove strongly developed, deep, wide, continuous across axis; lateral segment at angle of 80° to axis. Postcervical groove clear, deep, corresponding in width to mesogastric region. Greatest depth of postcervical groove located closer to margins of carapace; in central part barely noticeable. Branchiocardiac groove strongly developed laterally, less strongly developed in axial direction, continuous across axis. Lateral segments of branchiocardiac groove merging posteriorly with cardiac region, continuing to intersect with posterior margin. Segments of branchiocardiac groove barely noticeable in cardiac region. Epigastric regions spherical, small, located near rostrum, with apices directed toward each other. Mesogastric region clearly visible in both posterior and anterior parts; posterior part subtriangular, slightly swollen, bounded by pair of small grooves disappearing at approximate midlength of protogastric region; anterior part located between epigastric regions, elongated along axis of carapace. Protogastric and hepatic regions confluent, slightly swollen, separated from mesogastric region in anterior and posterior parts. Epibranchial regions slightly swollen, laterally elongated, bounded by branchiocardiac and cervical grooves; postcervical groove extending through epibranchial region. Cardiac region subtriangular, slightly swollen, merging posteriorly with flattened large branchial regions. Remainder of branchial regions broad, poorly ornamented, undifferentiated. Height of carapace highest in cardiac region. Posterior margin of carapace wide, entire, curved toward anterior part. Dorsal carapace ornamented with small, rough rows of tubercles over entire surface; largest tubercles closer to margins of carapace.

Material examined

Two almost complete carapaces, MWO 1 nos. 12875-1, 12875-2.

Measurements

Measurements (in mm) taken on specimens of Goniodromites aliquantulus are presented in Table 2.

Table 2. Measurements (in mm) of specimens of Goniodromites aliquantulus Schweitzer, Feldmann, and Lazǎr, 2007

Remarks

The new specimens are referred to Goniodromites aliquantulus based upon their longer-than-wide carapace, weak dorsal ornamentation, and short metagastric region. Other species are more equal in terms of length and width (Goniodromites bidentatus, Goniodromites cenomanensis, Goniodromites laevis, Goniodromites polyodon) and all other referred species have larger granules or scabrous ridges on the dorsal carapace, which Goniodromites aliquantulus lacks. The holotype of Goniodromites aliquantulus, described by Schweitzer et al. (Reference Schweitzer, Feldmann and Lazăr2007, fig. 4.1), has no front part of the carapace. The material that we describe expands the understanding of the morphology of this species, and in particular, we can now say that the rostrum of Goniodromites aliquantulus is bilobed and wide. We also note that the new specimens of this species are significantly larger than the holotype from Romania. However, the ratios of measurement parameters between Caucasian specimens and the holotype are approximately the same (Table 2). These measurements also show small variability in the ratios of the parameters. For example, the ratio of length of carapace to maximum carapace width in two Caucasian specimens is 1.08 in the large specimen and 1.22 in the small one. This value roughly corresponds to the ratio of these parameters in the holotype (Table 2). We consider these variations as intraspecific variability.

Discussion

As previously noted, many researchers (Krobicki and Zatoń, Reference Krobicki and Zatoń2008; Fraaije et al., Reference Fraaije, Van Bakel, Guinot and Jagt2013; Schweigert, Reference Schweigert2021; Van Bakel and Guinot, Reference Van Bakel and Guinot2023) have shown that brachyuran fossils in the Middle Jurassic are quite rare. The same is observed in the geological record of Anomura, in particular for Paguroidea, which has similarly high diversity but is recorded only in the Tithonian (Fraaije et al., Reference Fraaije, Van Bakel, Jagt, Charbonnier, Schweigert, Garcia and Valentin2022).

However, in the Late Jurassic, coral and sponge-microbial reefs began to spread widely, especially confined to the edge of the warm waters of the Tethys Ocean. Therefore, in deposits of this geological age, especially in southern Europe, siliceous sponge-microbial and coral facies are widespread. Many researchers (Klompmaker et al., Reference Klompmaker, Schweitzer, Feldmann and Kowalewski2013, Reference Klompmaker, Starzyk, Fraaije and Schweigert2020; Schweigert, Reference Schweigert2021) have linked the diversification of crabs in these paleobiogeographic areas to the presence of reefs.

Findings of Goniodromites aliquantulus, as well as other species of Goniodromites, are often confined to carbonate prereef and reef facies. Various species of Goniodromites from the Jurassic and Cretaceous of Europe and Asia (Japan) demonstrate that the intervening deposits are not limited to a single type. For example, Klompmaker et al. (Reference Klompmaker, Feldmann and Schweitzer2012, table 1) noted a wide diversity of ecological settings for this genus: sponge microbial limestones, coral reefal limestones, sponge limestones, limestones (without specification), and sands/marls/chalks and shale. Thus, Goniodromites was apparently a eurytypic crab and lived in a wide variety of environments. For example in Romania, Schweitzer et al. (Reference Schweitzer, Lazăr, Feldmann, Stoica and Franţescu2017) noted that the depositional conditions of the rocks in which Goniodromites species occur are variable and can be represented by sponge limestone, coral limestone, algal limestone, and even siliciclastic facies. However, it is interesting that the Romanian Goniodromites aliquantulus, like the Caucasian occurrence, comes from sponge limestone of Oxfordian age. Thus, Goniodromites is a widespread, commonly occurring genus in Jurassic rocks of Europe, and it has been recovered from coral, sponge-algal, and nonreefal limestones as well as lithographic limestones (Schweitzer and Feldmann, Reference Schweitzer and Feldmann2007a; Feldmann et al., Reference Feldmann, Schweitzer, Schweigert, Robins, Karasawa and Luque2016).

The discovery of Gastrosacus wetzleri expands the geographic distribution of this species, previously found only in the Kimmeridgian of Germany and the Oxfordian of England (Robins et al., Reference Robins, Fraaije, Klompmaker, Van Bakel and Jagt2015). This suggests that both Goniodromites and Gastrosacus were eurytypic genera and survived in many types of environments. This could explain why both genera are so speciose and widespread in the Jurassic and Cretaceous of Europe. Findings of fossil remains of the brachyuran Goniodromites aliquantulus and the anomuran Gastrosacus wetzleri from the Oxfordian in the North Caucasus indicate an interconnected paleobiogeographical decapod fauna in the Late Jurassic in the Tethys basins.

Acknowledgments

We are grateful to M. Sukhot’ko and K. Belikova for donating specimens for this research; D. Kiselev (Yaroslavl State Pedagogical University, Yaroslavl, Russia) for help with searching for literature and photographs of localities and to the reviewers for their detailed and thorough revision of the paper, namely C. Robins (University of Alabama at Tuscaloosa, USA) and N. Starzyk (Institute of Systematics and Evolution of Animals, Polish Academy of Sciences), also Guest Editor for this paper A. Klompmaker (University of Alabama at Tuscaloosa, USA). The research was supported by RSF (project no. 22-14-00258).

Competing interests

The authors declare none.

Footnotes

Handling Editor: Adiël A Klompmaker

Deceased.

References

Alcock, A., 1900, Materials for a carcinological fauna of India, no. 5: The Brachyura Primigenia or Dromiacea: Journal of the Asiatic Society of Bengal, v. 68, no. 2/3, p. 123169.Google Scholar
Bachmayer, F., 1947, Die Crustaceen aus dem Ernstbrunner Kalk der Jura-Klippenzone zwischen Donau und Thaya: Jahrbuch der Geologischen Bundesanstalt Wien, v. 90, p. 3547.Google Scholar
Bachmayer, F., 1959, Neue Crustaceen aus dem Jura von Stramberg (ČSR): Biologie, Mineralogie, Erdkunde, und verwandte Wissenschaften, v. 168, p. 937944.Google Scholar
Balss, H., 1913, Über fossile Galatheiden: Centralblatt für Mineralogie, v. 1913, p. 155160.Google Scholar
Bell, T., 1863, A monograph of the fossil malacostracous Crustacea of Great Britain, part 2: Crustacea of the Gault and Greensand: Monographs of the Palaeontographical Society, v. 14, p. 140.Google Scholar
Beurlen, K., 1929, Untersuchungen über Prosoponiden: Zentralblatt für Mineralogie, Geologie und Paläontologie, (B, Geologie und Paläontologie), v. 1929, p. 125142.Google Scholar
Beurlen, K., 1932, Brachyurenreste aus dem Lias von Bornholm mit Beiträgen zur Phylogenie und Systematik der brachyuren Dekapoden: Paläontologische Zeitschrift, v. 14, p. 5266.10.1007/BF03041617CrossRefGoogle Scholar
Blaschke, F., 1911, Zur Tithonfauna von Stramberg in Mähren: Annalen des Naturhistorischen Museums in Wien, v. 25, no. 1/2, p. 143222.Google Scholar
Carter, J., 1898, A contribution to the palaeontology of the decapod Crustacea of England: Quarterly Journal of the Geological Society of London, v. 54, no. 1, p. 1544.10.1144/GSL.JGS.1898.054.01-04.06CrossRefGoogle Scholar
Collins, J.S.H., and Wierzbowski, A., 1985, Crabs from the Oxfordian sponge megafacies of Poland: Acta Geologica Polonica, v. 35, no. 1/2, p. 7388.Google Scholar
De Angeli, A., and Garassino, A., 2006, New reports of decapod crustaceans from the Mesozoic and Cenozoic of Friuli-Venezia Giulia (NE Italy): Atti Della Società Italiana di Scienze Naturali e del Museo Civico di Storia Naturale di Milano, v. 147, p. 267294.Google Scholar
De Haan, W., 1833, Crustacea, in von Siebold, P.F., ed., Fauna Japonica sive Descriptio Animalium, Quae in Itinere per Japoniam, Jussu et Auspiciis Superiorum, qui Summum in India Batava Imperium Tenent, Suscepto, Annis 1823–1830: Collegit, Notis, Observationibus et Adumbrationibus Illustravit: Leiden, Lugduni-Batavorum, p. 6572, pl. 16.Google Scholar
de Tribolet, M., 1874, Description des Crustacés du terrain néocomien du Jura neuchâtelois et Vaudois: Bulletin de la Société Géologique de France, ser. 3, v. 2 [1873–1874], p. 350365, pl. 12.Google Scholar
de Tribolet, M., 1875, Description des Crustacés Décapodes des étages néocomien et urgonien de la Haute-Marne: Bulletin de la Société Géologique de France, ser. 3, v. 3, p. 451459, pl. 15.Google Scholar
Dietl, G., and Schweigert, G., 2001, Im Reich der Meerengel: der Nusplinger Plattenkalk und seine Fossilien: Munich, Dr. Friedrich Pfeil, 144 p.Google Scholar
Étallon, A., 1859 (for year 1858), Description des Crustacés de la Haute Saône et du Haut-Jur: Bulletin de la Societé Géologique de France, ser. 2, v. 16, p. 169205.Google Scholar
Étallon, A., 1861, Notes sur les Crustacés Jurassiques du bassin du Jura: Mémoires de la Societé de l’Agriculture, des Sciences et Lettres de la Haute Saône, v. 9, p. 129171.Google Scholar
Fabricius, J.C., 1793, Entomologia Systematica Emendata et Aucta; Secundum Classes, Ordines, Genera, Species Adjectis Synonimis, Locis, Observationibus, Descriptionibus, Volume 2: Copenhagen, Christian Gottlob Proft, viii + 519 p.10.5962/bhl.title.125869CrossRefGoogle Scholar
Feldmann, R.M., and Schweitzer, C.E., 2009, Revision of Jurassic Homoloidea de Haan, 1839, from the Ernstbrunn and Stramberk limestones, Austria and the Czech Republic: Annalen des Naturhistorischen Museums in Wien, ser. A (Mineralogie und Petrographie, Geologie und Paläontologie, Anthropologie und Prähistorie), v. 111, p. 183205.Google Scholar
Feldmann, R.M., Lazăr, I., and Schweitzer, C.E., 2006, New crabs (Decapoda: Brachyura: Prosopidae) from Jurassic (Oxfordian) sponge bioherms of Dobrogea, Romania: Bulletin of the Mizunami Fossil Museum, v. 33, p. 120.Google Scholar
Feldmann, R.M., Schweitzer, C.E., Schweigert, G., Robins, C., Karasawa, H., and Luque, J., 2016, Additions to the morphology of Munidopsidae (Decapoda: Anomura) and Goniodromitidae (Decapoda: Brachyura) from the Jurassic Solnhofen-type Lagerstätten, Germany: Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, v. 279, p. 4356.10.1127/njgpa/2016/0539CrossRefGoogle Scholar
Förster, R., 1985, Frühe Anomuren und Brachyuren (Decapoda, Crustacea) aus dem Mittleren Dogger: Mitteilungen der Bayerischen Staatssammlung für Paläontologie und Historische Geologie, v. 25, p. 4560.Google Scholar
Förster, R., 1986, Der erste Nachweis eines brachyuren Krebses aus dem Lias (oberes Pliensbach) Mitteleuropas: Mitteilungen der Bayerischen Staatssammlung für Paläontologie und Historische Geologie, v. 26, p. 2531.Google Scholar
Fraaije, R.H.B., 2014, Diverse Late Jurassic anomurans assemblages from the Swabian Alb and evolutionary history of paguroids based on carapace morphology: Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, v. 273, no. 2, p. 121145.10.1127/0077-7749/2014/0419CrossRefGoogle Scholar
Fraaije, R.H.B., Van Bakel, B.W.M., Guinot, D., and Jagt, J.W.M., 2013, A new Middle Jurassic (Bajocian) homolodromioid crab from northwest France; the earliest record of the Tanidromitidae: Boletín de la Sociedad Geológica Mexicana, v. 65, p. 249254, https://doi.org/10.18268/bsgm2013v65n2a6CrossRefGoogle Scholar
Fraaije, R.H.B., Van Bakel, B.W.M., Jagt, J.W.M., Charbonnier, S., and Pezy, J.-P., 2019, The oldest record of galatheoid anomurans (Decapoda, Crustacea) from Normandy, northwest France: Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, v. 292, p. 291297.Google Scholar
Fraaije, R.H.B., Van Bakel, B.W.M., Jagt, J.W.M., Charbonnier, S., Schweigert, G., Garcia, G., and Valentin, X., 2022, The evolution of hermit crabs (Crustacea, Decapoda, Anomura, Paguroidea) on the basis of carapace morphology: a state-of-the-art-report: Geodiversitas, v. 44, p. 116, https://doi.org/10.5252/geodiversitas2022v44a1CrossRefGoogle Scholar
Fraaije, R.H.B., Mychko, E.V., Barsukov, L.S., and Jagt, J.W.M., 2024, A new mid-Cretaceous hermit crab (Crustacea, Anomura) from central Russia sheds new light on paguroid evolution: Cretaceous Research, v. 154, n. 105749, https://doi.org/10.1016/j.cretres.2023.105749CrossRefGoogle Scholar
Franţescu, O.D., 2011, Brachyuran decapods (including five new species and one new genus) from Jurassic (Oxfordian-Kimmeridgian) coral reef limestones from Dobrogea, Romania: Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, v. 259, no. 3, p. 271297, https://doi.org/10.1127/0077-7749/2010/0110CrossRefGoogle Scholar
Garassino, A., and Krobicki, M., 2002, Galicia marianae n. gen., n. sp. (Crustacea, Decapoda, Astacidea) from the Oxfordian (Upper Jurassic) of the southern Polish uplands: Bulletin of the Mizunami Fossil Museum, v. 29, p. 5159.Google Scholar
Garassino, A., De Angeli, A., and Schweigert, G., 2005, Brachyurans from the Upper Jurassic (Kimmeridgian-Tithonian) of Pfalzpaint and Breitenhill (Bavaria, S Germany): Atti Della Società Italiana di Scienze Naturali e del Museo Civico di Storia Naturale di Milano, v. 146, no. 1, p. 6978.Google Scholar
Gašparič, R., Robins, C., and Gale, L., 2020, Mesogalathea ardua sp. nov., a new species of squat lobster (Decapoda, Galatheidae) from the Upper Jurassic olistolith at Velika Strmica (Dolenjska, Slovenia): Geologija, v. 63, no. 1, p. 2938, https://doi.org/10.5474/geologija.2020.003CrossRefGoogle Scholar
Glaessner, M.F., 1929, Crustacea Decapoda, in Pompeckj, F.J., ed., Fossilium Catalogus, Volume 1, Animalium 41: Berlin, W. Junk, p. 1464.Google Scholar
Hyžný, M., Schlögl, J., and Krobicki., M., 2011, Tanidromites insignis (von Meyer, 1857) (Crustacea: Decapoda: Brachyura) from Late Jurassic non-biohermal facies of the western Tethys (Pieniny Klippen Belt, Western Carpathians, Slovakia): Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, v. 262, no. 2, p. 213226, https://doi.org/10.1127/0077-7749/2011/0193CrossRefGoogle Scholar
Hyžný, M., Starzyk, N., Robins, C.M., and Kočová Veselská, M., 2015, Taxonomy and palaeoecology of a decapod crustacean assemblage from the Oxfordian of Stránská skála (southern Moravia, Czech Republic): Bulletin of Geosciences, v. 90, no. 3, p. 633650, https://doi.org/10.3140/bull.geosci.1559CrossRefGoogle Scholar
Ilyin, I.V., 2005, [Cretaceous and Paleogene decapod crustaceans of the western part of northern Eurasia]: Moscow, Moscow State University Press, 295 p. [In Russian]Google Scholar
Ilyin, I.V., and Alekseev, A.S., 1998, [New species of crabs (Decapoda, Brachyura) from Lower Cretaceous of southwestern Crimea]: Paleontological Journal, v. 6, p. 4649. [In Russian]Google Scholar
Karasawa, H., and Kato, H., 2007, New prosopid crabs (Crustacea, Decapoda, Brachyura) from the Upper Jurassic Torinosu Group, Shikoku, Japan: Memorie Della Società Italiana di Scienze Naturali e del Museo Civico di Storia Naturale in Milano, v. 35, no. 2, p. 6265.Google Scholar
Kato, H., Takahashi, T., and Taira, M., 2010, Late Jurassic decapod crustaceans from northeast Japan: Palaeontology, v. 53, no. 4, p. 761770, https://doi.org/10.1111/j.1475-4983.2010.00960.xCrossRefGoogle Scholar
Kiselev, D.N., 2022, [Ammonites and infrazonal stratigraphy of the boreal and subboreal Bathonian and Callovian]: Moscow, GEOS, 667 p. [in Russian]Google Scholar
Kiselev, D., Rogov, M., Glinskikh, L., Guzhikov, A., Pimenov, M., Mikhailov, A., Dzyuba, O., Matveev, A., and Tesakova, E., 2013, Integrated stratigraphy of the reference sections for the Callovian-Oxfordian boundary in European Russia: Volumina Jurassica, v. 11, p. 5996.Google Scholar
Klompmaker, A.A., Artal, P., Fraaije, R.H.B., and Jagt, J.W.M., 2011, Revision of the family Gastrodoridae (Crustacea, Decapoda), with description of the first species from the Cretaceous: Journal of Paleontology, v. 85, p. 226233, https://doi.org/10.1666/10-028.1CrossRefGoogle Scholar
Klompmaker, A.A., Feldmann, R.M., and Schweitzer, C.E., 2012, A hotspot for cretaceous goniodromitids (Decapoda: Brachyura) from reef associated strata in Spain: Journal of Crustacean Biology, v. 32, no. 5, p. 780801, https://doi.org/10.1163/193724012x635340CrossRefGoogle Scholar
Klompmaker, A.A., Schweitzer, C.E., Feldmann, R.M., and Kowalewski, M., 2013, The influence of reefs on the rise of Mesozoic marine crustaceans: Geology, v. 41, p. 11791182, https://doi.org/10.1130/G34768.1CrossRefGoogle Scholar
Klompmaker, A.A., Starzyk, N., Fraaije, R.H.B., and Schweigert, G., 2020, Systematics and convergent evolution of multiple reef-associated Jurassic and Cretaceous crabs (Decapoda, Brachyura): Palaeontologia Electronica, v. 23, no. 2, n. a32, https://doi.org/10.26879/1045Google Scholar
Krobicki, M., and Zatoń, M., 2008, Middle and Late Jurassic roots of brachyuran crabs: Palaeoenvironmental distribution during their early evolution: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 263, no. 1/2, p. 3043, https://doi.org/10.1016/j.palaeo.2008.01.025CrossRefGoogle Scholar
Krobicki, M., and Zatoń, M., 2016, A new homolodromioid crab (Brachyura: Dromiacea: Tanidromitidae) from the Bajocian of central Poland and a review of the known Middle Jurassic homolodromioids: Journal of Crustacean Biology, v. 36, p. 695715, https://doi.org/10.1163/1937240X-00002463CrossRefGoogle Scholar
Kummel, B., 1956, Post-Triassic nautiloid genera: Bulletin of the Museum of Comparative Zoology, v. 114, p. 324494.Google Scholar
Lang, F., Gründel, J., Jäger, M., Löser, H., Schlampp, V., Schneider, S., and Werner, W., 2017, Fossilien aus dem Riffschuttkalk des Kimmeridgium (Oberjura) von Saal a. d. Donau bei Kelheim (Bayern): Der Steinkern, v. 30, p. 1115.Google Scholar
Latreille, P.A., 1802, Histoire Nnaturelle, Générale et Particulière, des Crustacés et des Insectes, Volume 3: Paris, Dufart, 468 p.10.5962/bhl.title.15764CrossRefGoogle Scholar
Levitskiy, E.S., 1974, [Fossil decapod crustaceans from the vicinity of Bakhchysarai (Crimea)]: Bulletin of the Moscow Society of Naturalists, Geological Series, v. 49, p. 101119. [In Russian]Google Scholar
Linnaeus, C., 1758, Systema Naturae per Regna Tria Naturae (tenth edition), Volume 1, Regnum Animale: Stockholm, Laurentii Salvii, 824 p.Google Scholar
Loginova, G.A., 1964, [Osnovnye cherty geologicheskogo razvitiya central’noj chasti Severnogo Kavkaza v epohu verhnej yury. Voprosy Regional’noj Geologii SSSR]: Moscow, Izdatel’stvo Moskovskogo Universiteta, p. 97106. [In Russian]Google Scholar
Lominadze, T.A., 1982, [Callovian ammonoids of Caucasus]: Tbilisi, Georgia, Metsniereba, 272 p. [In Russian]Google Scholar
Lörenthey, E., and Beurlen, K., 1929, Die fossilen Decapoden der Länder der Ungarischen Krone: Geologica Hungarica, (Palaeontologica), v. 3, p. 1421.Google Scholar
MacLeay, W. S., 1838, On the brachyurous decapod Crustacea brought from the Cape by Dr. Smith, in Smith, A., Illustrations of the Annulosa of South Africa; Consisting Chiefly of Figures and Descriptions of the Objects of Natural History Collected During an Expedition into the Interior of South Africa, in the Years 1834, 1835, and 1836; Fitted Out by ‘The Cape of Good Hope Association for Exploring Central Africa…’: London, Smith, Elder, and Company, p. 5371.Google Scholar
Mironenko, A., 2020, A hermit crab preserved inside an ammonite shell from the Upper Jurassic of central Russia: implications to ammonoid palaeoecology: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 537, n. 109397, https://doi.org/10.1016/j.palaeo.2019.109397CrossRefGoogle Scholar
Moericke, W., 1889, Crustaceen der Stramberger Schichten: Palaeontographica, v. 2, p. 4372.Google Scholar
Muţiu, R., and Bădăluţă, A., 1971, La presence des Décapodes anomures et dromiacés dans les calcaires Tithoniques de la plate-forme Moësienne: Annales Instituti Geologici Publici Hungarici, v. 54, no. 2, p. 245252.Google Scholar
Mychko, E.V., Schweitzer, C.E., Feldmann, R.M., and Shmakov, A.S., 2023, The first report of Necrocarcinus (Crustacea: Brachyura: Raninoida) from the Cenomanian of central Russia: Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, v. 309, no. 1, p. 113, https://doi.org/10.1127/njgpa/2023/1146CrossRefGoogle Scholar
Mychko, E.V., Schweitzer, C.E., and Feldmann, R.M., 2024, The first report of Silvacarcinus (Crustacea: Brachyura: Orithopsidae) from the Upper Cretaceous of southern Cis-Urals (Orenburg Oblast, Russia): Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, v. 311, no. 2, p. 19, https://doi.org/10.1127/njgpa/2024/1188CrossRefGoogle Scholar
Nikshich, I.I., 1915, [The Jurassic deposits of the Belaya River basin on the northern slope of Caucasus]: Bulletin of the Geological Committee, v. 34, no. 4, p. 509538. [In Russian]Google Scholar
Ortmann, A.E., 1898, Crustacea, Gliederfüssler: Arthropoda: in Bronn, H.G., Klassen und Ordnungen des Thier-Reichs, Wissenschaftlich Dargestelt in Wort und Bild: Leipzig, CF Winter’sche Verlagshandlung, p. 11491150.Google Scholar
Patrulius, D., 1959, Contributions à la systématique des décapodes néojurassiques: Revue de Géologie et de Géographie, v. 3, p. 249257.Google Scholar
Patrulius, D., 1966, Les Décapodes du Tithonique Inférieur de Woźniki (Carpates Polonaises Occidentales): Annales Societatis Geologorum Poloniae, v. 36, no. 4, p. 495517.Google Scholar
Paulsen, S., 1964, Aufbau und Petrographie des Riffkomplexes von Arnegg im höheren Weißen Jura der Schwäbischen Alb (Württemberg): Arbeiten aus dem Geologisch-Paläontologischen Institut der Technischen Hochschule Stuttgart, v. 42, p. 198.Google Scholar
Pelseneer, P., 1886, Notice sur les Crustacés Décapodes du Maestrichien du Limbourg: Bulletin du Musée Royal d’Histoire Naturelle de Belgique, v. 4, p. 161175.Google Scholar
Quenstedt, F.A., 1856–1857, Der Jura: Tübingen, Laupp, 842 p.Google Scholar
Quenstedt, F.A., 1868, Handbuch der Petrefaktenkunde: Tübingen, Laupp, 792 p.Google Scholar
Remeš, M., 1895, Beiträge zur Kenntniss der Crustaceen der Stramberger Schichten: Bulletin International, Académie des Sciences de l’Empereur François Joseph I, Classe des Sciences Mathématiques et Naturelles, Résumes des Travaux Présentés, v. 2, p. 200, 201.Google Scholar
Reuss, A. E., 1858 (imprint 1857), Über kurzschwänzige Krebse im Jurakalke Mährens: Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften. Mathematischnaturwissenschaftliche Classe, v. 31, p. 513.Google Scholar
Robins, C.M., Feldmann, R.M., and Schweitzer, C.E., 2013, Nine new genera and 24 new species of the Munidopsidae (Decapoda: Anomura: Galatheoidea) from the Jurassic Ernstbrunn Limestone of Austria, and notes on fossil munidopsid classification: Annalen des Naturhistorischen Museums in Wien, ser. A (Mineralogie und Petrographie, Geologie und Paläontologie, Anthropologie und Prähistorie), v. 115, p. 167251.Google Scholar
Robins, C.M., Fraaije, R.H.B., Klompmaker, A.A., Van Bakel, B.W.M., and Jagt, J.W.M., 2015, New material and redescription of Gastrosacus wetzleri von Meyer, 1851 (Decapoda, Anomura, Galatheoidea) from the Late Jurassic of southern Germany: Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, v. 275, no. 1, p. 8391.10.1127/njgpa/2015/0452CrossRefGoogle Scholar
Robins, C.M., Feldmann, R.M., Schweitzer, C.E., and Bonde, A., 2016, New families Paragalatheidae and Catillogalatheidae (Decapoda: Anomura: Galatheoidea) from the Mesozoic, restriction of the genus Paragalathea, and establishment of 6 new genera and 20 new species: Naturhistorischen Museums in Wien, ser. A, v. 118, p. 65131.Google Scholar
Rostovtsev, K.O., Agajev, V.B., Azarjan, N.R., Babajev, R.G., Beznosov, N.V., et al., 1992, [Jurassic of Caucasus]: Saint Peterburg, Nauka, 192 pp. [In Russian]Google Scholar
Ruiz de Gaona, M., 1943, Nota sobre crustáceos decápodos de la cantera del Monte Orobe (Alsasua): Boletin Real Sociedad Española de Historia Natural, v. 40, p. 425433, pl. 28.Google Scholar
Samouelle, G., 1819, The Entomologist’s Useful Compendium, or an Introduction to the Knowledge of British Insects: London, Thomas Boys, 496 p.Google Scholar
Schweigert, G., 2021, A new genus of prosopid crabs (Decapoda: Brachyura: Dromiacea) from the Upper Jurassic of southern Germany: Boletín de la Sociedad Geológica Mexicana, v. 73, no. 3, n. A030121, https://doi.org/10.18268/bsgm2021v73n3a030121CrossRefGoogle Scholar
Schweigert, G., and Koppka, J., 2011, Decapods (Crustacea: Brachyura) from the Jurassic of Germany and Lithuania, with descriptions of new species of Planoprosopon and Tanidromites: Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, v. 260, p. 221235.10.1127/0077-7749/2011/0136CrossRefGoogle Scholar
Schweigert, G., Fraaije, R., Nützel, A., and Havlik, P., 2013, New Early Jurassic hermit crabs from Germany and France: Journal of Crustacean Biology, v. 33, no. 6, p. 802817, https://doi.org/10.1163/1937240x-00002191CrossRefGoogle Scholar
Schweitzer, C. E., and Feldmann, R. M., 2007a, Goniodromites Reuss, 1858 (Crustacea: Decapoda: Brachyura: Goniodromitidae): the cockroach of the Jurassic Oceans. Abstracts with Programs, Geological Society of America, v. 39, no. 6, p. 75.Google Scholar
Schweitzer, C.E., and Feldmann, R.M., 2007b, A new classification for some Jurassic Brachyura (Crustacea: Decapoda: Brachyura: Homolodromioidea): families Goniodromitidae Beurlen, 1932 and Tanidromitidae new family: Senckenbergiana Lethaea, v. 87, no. 2, p. 119155, https://doi.org/10.1007/bf03043911CrossRefGoogle Scholar
Schweitzer, C.E., and Feldmann, R.M., 2009, Revision of the Prosopinae sensu Glaessner, 1969 (Crustacea: Decapoda: Brachyura) including four new families, four new genera, and five new species: Annalen des Naturhistorischen Museums in Wien, ser. A (Mineralogie und Petrographie, Geologie und Paläontologie, Anthropologie und Prähistorie), v. 110, p. 55121.Google Scholar
Schweitzer, C.E., Feldmann, R.M., and Lazăr, I., 2007, Decapods from Jurassic (Oxfordian) sponge megafacies of Dobrogea, Romania and reconsideration of Nodoprosopon Beurlen: Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, v. 244, no. 1, p. 99113.10.1127/0077-7749/2007/0244-0099CrossRefGoogle Scholar
Schweitzer, C.E., Feldmann, R.M., and Lazǎr, I., 2009, Fossil Crustacea (excluding Cirripedia and Ostracoda) in the University of Bucharest Collections, Romania, including new species: Bulletin of the Mizunami Fossil Museum, v. 35, p. 114.Google Scholar
Schweitzer, C.E., Feldmann, R.M., Garassino, A., Karasawa, H., and Schweigert, G., 2010, Systematic list of fossil decapod crustacean species: Crustaceana Monographs, v. 10, p. 1222, https://doi.org/10.1163/193724012X626575Google Scholar
Schweitzer, C.E., Feldmann, R.M., and Karasawa, H., 2012, Systematic descriptions: infraorder Brachyura, section Dromiacea, in Seldon, P.A., ed., Treatise [on Invertebrate Paleontology] Online no. 51, Part R (revised), Volume 1, Chapter 8M: Lawrence, Kansas, The Paleontological Institute, 43 p., https://doi.org/10.17161/to.v0i0.4336CrossRefGoogle Scholar
Schweitzer, C.E., Lazăr, I., Feldmann, R.M., Stoica, M., and Franţescu, O., 2017, Decapoda (Anomura; Brachyura) from the Late Jurassic of Dobrogea, Romania: Neues Jahrbuch für Geologie und Paläontologie, v. 286, no. 2, p. 207228, https://doi.org/10.1127/njgpa/2017/0696CrossRefGoogle Scholar
Schweitzer, C.E., Feldmann, R.N., Karasawa, H., Klompmaker, A.A., and Robins, C.M., 2023, Systematic descriptions: Infraorder Anomura (exclusive of Lithodoidea, Lomisoidea, and Paguroidea), in Seldon, P.A., ed., Treatise [on Invertebrate Paleontology] Online no 168, Part R (revised), Volume 1, Chapter 8T22: Lawrence, Kansas, The Paleontological Institute, 31 p., https://doi.org/10.17161/to.vi.21021CrossRefGoogle Scholar
Smith, A.B., and Xu, J., 1988, Palaeontology of the 1985 Tibet geotraverse, Lhasa to Golmud: Philosophical Transactions of the Royal Society of London, ser. A (Mathematical and Physical Sciences), v. 327, no. 1594, p. 53105, https://doi.org/10.1098/rsta.1988.0122Google Scholar
Starzyk, N., Krzemińska, E., and Krzemiński, W., 2012, A new crab species from the Oxfordian of Poland (Decapoda: Brachyura: Goniodromitidae): Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, v. 263, p. 143153.10.1127/0077-7749/2012/0219CrossRefGoogle Scholar
Stolley, E., 1914, Über einige Brachyuren aus der Trias und dem Dogger der Alpen: Jahrbuch der Kaiserlich-Königlichen Geologischen Reichsanstalt, v. 64, p. 675682.Google Scholar
Trammer, J., 1989, Middle to upper Oxfordian sponges of the Polish Jura: Acta Geologica Polonica, v. 39, nos. 1–4, p. 4992.Google Scholar
Ul’shin, M.A., Tishchenko, A.I., and Pologov, V.I., 2020, [O novyh nahodkah nizhnemelovyh desyatinogih rakoobraznyh (Decapoda) v Krymu Problemy regional’noj geologii Severnoj Evrazii: Materialy Konferencii]: Moscow, MGRI-RGGRU, p. 113116. [In Russian]Google Scholar
Van Bakel, B.W.M., and Guinot, D., 2023, New genera and species of glaessneropsid crabs from the Lower and Middle Jurassic of France and Germany-Austria, and reconsolidation of Charassocarcinus Van Straelen, 1925: Geobios, v. 79, p. 6176, https://doi.org/10.1016/j.geobios.2023.05.007CrossRefGoogle Scholar
Van Bakel, B.W.M., Fraaije, R.H.B., Jagt, J.W.M., and Artal, P., 2008, An unexpected diversity of Late Jurassic hermit crabs (Crustacea, Decapoda, Anomura) in central Europe: Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, v. 250, no. 2, p. 137156, https://doi.org/10.1127/0077-7749/2008/0250-0137CrossRefGoogle Scholar
Van Bakel, B.W.M., Mychko, E.V., Spiridonov, A., Jagt, J.W.M., and Fraaije, R.H.B., 2021, New Cretaceous crabs (Crustacea, Brachyura) from Moscow Oblast and Dagestan (Russia): patterns in phylogeny and morphospace of the oldest eubrachyurans (Dorippoidea): Cretaceous Research, v. 119, n. 104675, https://doi.org/10.1016/j.cretres.2020.104675CrossRefGoogle Scholar
Van Straelen, V., 1925, Contribution à l’étude des Crustacés Décapodes de la période Jurassique: Mémoires de l’Académie Royale de Belgique, Classe des Sciences, ser. 2, v. 7, p. 298308.Google Scholar
Van Straelen, V., 1940, Crustacés Décapodes nouveaux du Crétacique de la Navarre: Bulletin du Musée Royal d’Histoire Naturelle de Belgique, v. 16, no. 4, p. 15.Google Scholar
von Meyer, H., 1851, Briefliche Mittheilungen: Neues Jahrbuch für Mineralogie, Geologie, Geognosie und Petrefaktenkunde, v. 1851, p. 677680.Google Scholar
von Meyer, H., 1854, Jurasische und Triasische Crustaceen: Palaeontographica, v. 4, no. 2, p. 4455.Google Scholar
von Meyer, H., 1857, Briefliche Mitteilungen: Neues Jahrbuch für Mineralogie, Geologie, Geognosie, und Petrefaktenkunde, v. 1857, p. 556.Google Scholar
von Meyer, H., 1860, Die Prosoponiden oder Familie der Maskenkrebse: Palaeontographica, v. 7, p. 183222.Google Scholar
von Mücke, K., 1915, Beitrag zur Kenntnis des Karpathensandsteins im siebenbürgischen Erzgebirge: Verhandlungen der Kaiserlich-Königlichen Geologischen Reichsanstalt, v. 8, p. 154162.Google Scholar
Withers, T.H., 1932, A Liassic crab, and the origin of the Brachyura: Annals and Magazine of Natural History, v. 9, no. 51, p. 313323.10.1080/00222933208673499CrossRefGoogle Scholar
Woodward, H., 1868, On a new brachyurous Crustacean (Prosopon mammilatum) from the Great Oolite, Stonesfield: Geological Magazine, v. 5, p. 35.10.1017/S0016756800207140CrossRefGoogle Scholar
Woodward, H., 1907, On a new brachyurous crustacean from the ‘Clypeus-Grit’ (inferior oolite) of the Cotteswold Hills: Geological Magazine, v. 4, no. 5, p. 7981.10.1017/S0016756800120205CrossRefGoogle Scholar
Wright, C.W., and Collins, J.S.H., 1972, British Cretaceous Crabs: London, Monographs of the Palaeontographical Society, 113 p.Google Scholar
Young, G., and Bird, J., 1828, A Geological Survey of the Yorkshire Coast: Describing the Strata and Fossils Occurring Between the Humber and the Tees, from the German Ocean to the Plain of York (second edition): Whitvy, UK, Clark, 366 p.Google Scholar
Figure 0

Table 1. Mesozoic brachyuran and anomuran occurrences from Russia. For other generic occurrence references, consult Schweitzer et al. (2012, 2023)

Figure 1

Figure 1. Localities of described decapods of North Caucasus: (1) schematic map of the Eastern Hemisphere; (2) schematic map of the Caucasus and Transcaucasia; (3) terrain map of the North Caucasus with localities (4) and (5) (Republic of Adygea and Krasnodar Krai, Russia); (4) Dachovskaya–Kamennomostsky, Oxfordian limestone near the Kamennomostsky village (photo by D. Kiselev); (5) Urup River, Oxfordian limestone on Bolshoi Zelenchuk River (photo by M. Sukhot’ko).

Figure 2

Figure 2. Fossil remains from deposits with described decapods of North Caucasus: (1–4) collected from locality near Urup River: (1, 2) bivalves, MWO 1 no. 12877, 12878; (3) terebratulid brachiopod, MWO 1 no. 12874; (4), rhynchonellid brachiopod, MWO 1 no. 12880; (5, 6) collected from locality near the Kamennomostsky village: (5) fragment of hexacoral, MWO 1 no. 12873; (6) serpulid annelid worm, MWO 1 no. 12879. Scale bars = 1 cm.

Figure 3

Figure 3. Gastrosacus wetzleri von Meyer, 1851, almost complete carapace, MWO 1 no. 12876, from crushed limestone near the Urup River, district of the Gusarovskoye village, Krasnodar Krai, Russia; Oxfordian, Upper Jurassic: (1) dorsal view; (2) left lateral view; (3) the specimen in the rock; (4) schematic of carapace morphology. Scale bars = 5 mm (1, 2).

Figure 4

Figure 4. Goniodromites aliquantulus Schweitzer, Feldmann, and Lazǎr, 2007, collected from crushed limestone near the Kamennomostsky village, Maikop district, Republic of Adygea, Russia; Oxfordian, Upper Jurassic: (1–4) MWO 1 no. 12875-1: (1) dorsal view; (2) anterior view; (3) left lateral view; (4) the specimen in the rock; (5–7) MWO 1 no. 12875-2: (5) dorsal view; (6) right lateral view; (7) the specimen in the rock; (8) schematic of carapace morphology. Scale bar = 5 mm.

Figure 5

Table 2. Measurements (in mm) of specimens of Goniodromites aliquantulus Schweitzer, Feldmann, and Lazǎr, 2007