No CrossRef data available.
 $\mathrm {GL}_n$
$\mathrm {GL}_n$Published online by Cambridge University Press: 24 September 2025
We study the so-called averaging functors from the geometric Langlands program in the setting of Fargues’ program. This makes explicit certain cases of the spectral action which was recently introduced by Fargues-Scholze in the local Langlands program for  $\mathrm {GL}_n$. Using these averaging functors, we verify (without using local Langlands) that the Fargues-Scholze parameters associated to supercuspidal modular representations of
$\mathrm {GL}_n$. Using these averaging functors, we verify (without using local Langlands) that the Fargues-Scholze parameters associated to supercuspidal modular representations of  $\mathrm {GL}_2$ are irreducible. We also attach to any irreducible
$\mathrm {GL}_2$ are irreducible. We also attach to any irreducible  $\ell $-adic Weil representation of degree n an Hecke eigensheaf on
$\ell $-adic Weil representation of degree n an Hecke eigensheaf on  $\mathrm {Bun}_n$ and show, using the local Langlands correspondence and recent results of Hansen and Hansen-Kaletha-Weinstein, that it satisfies most of the requirements of Fargues’ conjecture for
$\mathrm {Bun}_n$ and show, using the local Langlands correspondence and recent results of Hansen and Hansen-Kaletha-Weinstein, that it satisfies most of the requirements of Fargues’ conjecture for  $\mathrm {GL}_n$.
$\mathrm {GL}_n$.
 $\ell$
-modular smooth representations of finite length of
$\ell$
-modular smooth representations of finite length of 
 $gl\left(m,d\right)$
. arXiv preprint 2102.05898.Google Scholar
$gl\left(m,d\right)$
. arXiv preprint 2102.05898.Google Scholar $\ell$
-adic representations of the fundamental group of a curve over a finite field and automorphic forms on
$\ell$
-adic representations of the fundamental group of a curve over a finite field and automorphic forms on 
 $GL(2)$
. Amer. J. Math. 105(1), 85–114.10.2307/2374382CrossRefGoogle Scholar
$GL(2)$
. Amer. J. Math. 105(1), 85–114.10.2307/2374382CrossRefGoogle Scholar $p$
-adic group in characteristic distinct from
$p$
-adic group in characteristic distinct from 
 $p$
. arXiv preprint:2010.06462.Google Scholar
$p$
. arXiv preprint:2010.06462.Google Scholar $GL(n,K)$
 where
$GL(n,K)$
 where 
 $K$
 is a local field. Funct Anal Its Appl. 6, 315–317. https://doi.org/10.1007/BF01077652.CrossRefGoogle Scholar
$K$
 is a local field. Funct Anal Its Appl. 6, 315–317. https://doi.org/10.1007/BF01077652.CrossRefGoogle Scholar $\ell$
 pour les formes intérieures de
$\ell$
 pour les formes intérieures de 
 $G{L}_n$
 sur un corps local non archimédien. Proc. Lond. Math. Soc. 109(4), 823–891.Google Scholar
$G{L}_n$
 sur un corps local non archimédien. Proc. Lond. Math. Soc. 109(4), 823–891.Google Scholar $p$
-adic geometry. notes from lecture course at UC Berkeley. Available at http://www.math.uni-bonn.de/people/scholze/Berkeley.pdf.Google Scholar
$p$
-adic geometry. notes from lecture course at UC Berkeley. Available at http://www.math.uni-bonn.de/people/scholze/Berkeley.pdf.Google Scholar $GL\left(2,F\right)$
 en caractéristique
$GL\left(2,F\right)$
 en caractéristique 
 $\ell$
,
$\ell$
, 
 $F$
 corps
$F$
 corps 
 $p$
-adique,
$p$
-adique, 
 $p\ne \ell$
. Compos. Math. 72(1), 33–66.Google Scholar
$p\ne \ell$
. Compos. Math. 72(1), 33–66.Google Scholar