Hostname: page-component-5b777bbd6c-mqssf Total loading time: 0 Render date: 2025-06-22T20:25:36.608Z Has data issue: false hasContentIssue false

Trophic ecology and foraging behaviour of Neotropical tanagers: fruit–frugivore relationships and arthropod foraging

Published online by Cambridge University Press:  16 June 2025

Marco Antônio Manhães*
Affiliation:
Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil
*
Corresponding author: Marco Antônio Manhães; Email: marcomanhaes1@yahoo.com.br

Abstract

Resource partitioning remains a central ecological issue for understanding the structures of animal communities. As members of the generalist New World Thraupidae bird family, tanagers can help reinforce knowledge of animal communities. Thus, to study bird trophic ecology and relationships, I followed six tanager species (Schistochlamys ruficapillus, Tangara desmaresti, Stilpnia cayana, Stephanophorus diadematus, Thraupis sayaca and Dacnis cayana) from the Ibitipoca State Park, south-eastern Brazil, for 12 months. I expected 1) more similarities among frugivorous behaviours when compared to the similarities in the frugivorous diet, 2) no differences between the predation behaviours on arthropods against the use of substrates to capture them, 3) no specialisation in the bird–fruit seed dispersal network and 4) similarities of frugivorous diet and substrate use equal those expected by chance due to the absence of specialisation in frugivory and limited use of substrates. Several ecological and behavioural factors seemed to determine the ways in which Ibitipoca tanagers consumed fruits to reduce similarities in diets and reveal network specialisation. On the other hand, the analysis of predation behaviour indicated that tanager species used similar tactics to reach arthropods randomly on substrates. In general, frugivory seems to be more relevant in trophic partitioning than foraging on arthropods in Ibitipoca tanagers.

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Blancher, DJ and Robertson, RJ (1984) Resource use by sympatric kingbirds. Condor 86, 305313.10.2307/1367001CrossRefGoogle Scholar
Blendinger, PG, Ruggera, RA, Montellano, MGN, Macchi, L, Zelaya, PV, Álvarez, ME, Martín, E, Acosta, OO, Sánchez, R and Haedo, J (2012) Fine-tuning the fruit-tracking hypothesis: spatiotemporal links between fruit availability and fruit consumption by birds in Andean mountain forests. Journal of Animal Ecology 81, 12981310.10.1111/j.1365-2656.2012.02011.xCrossRefGoogle ScholarPubMed
Blüthgen, N, Menzel, F and Blüthgen, N (2006) Measuring specialization in species interaction networks. BMC ecology 6, 112.10.1186/1472-6785-6-9CrossRefGoogle ScholarPubMed
Blüthgen, N, Menzel, F, Hovestadt, T, Fiala, B and Blüthgen, N (2007) Specialization, constraints, and conflicting interests in mutualistic networks. Current biology 17, 341346.10.1016/j.cub.2006.12.039CrossRefGoogle ScholarPubMed
Buitrón-Jurado, G and Sanz, V (2021) Specialization increases in a frugivorous bird–plant network from an isolated montane forest remnant. Community Ecology 22, 261274.10.1007/s42974-020-00010-xCrossRefGoogle Scholar
Borghesio, L and Laiolo, P (2004) Seasonal foraging ecology in a forest avifauna of northern Kenya. Journal of Tropical Ecology 20, 145155.10.1017/S0266467403001159CrossRefGoogle Scholar
Brumfield, RT, Tello, JG, Cheviron, ZA, Carling, MD, Crochet, N and Rosenberg, KV (2007) Phylogenetic conservatism and antiquity of a tropical specialization: army-ant-following in the typical antbirds (Thamnophilidae). Molecular Phylogenetics and Evolution 45, 113.10.1016/j.ympev.2007.07.019CrossRefGoogle ScholarPubMed
Carnicer, J, Jordano, P and Melián, CJ (2009) The temporal dynamics of resource use by frugivorous birds: a network approach. Ecology 90, 19581970.10.1890/07-1939.1CrossRefGoogle ScholarPubMed
Carvalho, LMT, Fontes, MAL and Oliveira-Filho, AT (2000) Tree species distribution in canopy gaps and mature forest in an area of cloud forest of the Ibitipoca Range, south-eastern Brazil. Plant Ecology 149, 922.10.1023/A:1009836810707CrossRefGoogle Scholar
Cazetta, E, Schaefer, HM and Galetti, M (2009) Why are fruits colorful? The relative importance of achromatic and chromatic contrasts for detection by birds. Evolutionary Ecology 23, 233244.10.1007/s10682-007-9217-1CrossRefGoogle Scholar
Chama, L, Berens, DG, Downs, CT and Farwi, N (2013) Habitat characteristics of forest fragments determine specialisation of plant-frugivore networks in a mosaic forest landscape. PLoS One 8, e54956.10.1371/journal.pone.0054956CrossRefGoogle Scholar
Chapman, A and Rosenberg, KV (1991) Diets of four sympatric Amazonian woodcreepers (Dendrocolaptidae). Condor 93, 904915.10.2307/3247725CrossRefGoogle Scholar
Craig, RJ (1990) Foraging behavior and microhabitat use of two species of White-Eyes (Zosteropidae) on Saipan, Micronesia. Auk 107, 500505.Google Scholar
Crestani, AC, Mello, MAR and Cazetta, E (2019) Interindividual variations in plant and fruit traits affect the structure of a plant-frugivore network. Acta Oecologica 95, 120127.10.1016/j.actao.2018.11.003CrossRefGoogle Scholar
Dalsgaard, B, Schleuning, M, Maruyama, PK, Dehling, DM, Sonne, J, Vizentin-Bugoni, J, Zanata, TB, Fjeldså, J, Böhning-Gaese, K and Rahbek, C (2017) Opposed latitudinal patterns of network-derived and dietary specialization in avian plant–frugivore interaction systems. Ecography 40, 13951401.10.1111/ecog.02604CrossRefGoogle Scholar
Denslow, JS, Moermond, TC and Levey, DJ (1986) Spatial components of fruit display in understory trees and shrubs. In Estrada, A and Fleming, TH (eds), Frugivores and Seed Dispersal. Dordrecht: Springer, pp. 3744.CrossRefGoogle Scholar
Dias, HCT, Fernandes Filho, EI, Schaefer, CEGR, Fontes, LEF and Ventorim, LB (2002) Geoambientes do parque estadual do Ibitipoca, município de Lima Duarte-MG. Revista Árvore 26, 777786.10.1590/S0100-67622002000600014CrossRefGoogle Scholar
Dormann, CF, Fründ, J, Blüthgen, N and Gruber, B (2009) Indices, graphs and null models: analyzing bipartite ecological networks. The Open Ecology Journal 2, 724.10.2174/1874213000902010007CrossRefGoogle Scholar
Durlak, JA (2009) How to select, calculate, and interpret effect sizes. Journal of Pediatric Psychology 34, 917928.10.1093/jpepsy/jsp004CrossRefGoogle ScholarPubMed
Eckhardt, RC (1979) The adaptive syndromes of two guilds of insectivorous birds in the Colorado rock mountain. Ecological Monographs 49,129149.10.2307/1942510CrossRefGoogle Scholar
Fernandes, TT, Dáttilo, W, Silva, R, Luna, P, Braz, A and Morini, MSC (2020) Cohabitation and niche overlap in the occupation of twigs by arthropods in the leaf litter of Brazilian Atlantic Forest. Insectes Sociaux 67, 239247.10.1007/s00040-020-00753-wCrossRefGoogle Scholar
Fleming, TH and Kress, WJ (2013) The Ornaments of Life: Coevolution and Conservation in the Tropics. Chicago: University of Chicago Press.10.7208/chicago/9780226023328.001.0001CrossRefGoogle Scholar
Foster, MS (1987) Feeding methods and efficiencies of selected frugivorous birds. Condor 89, 566580.10.2307/1368645CrossRefGoogle Scholar
Fuentes, M (1995) How specialized are fruit-bird interactions? Overlap of frugivore assemblages within and between plant species. Oikos 74, 324330.10.2307/3545663CrossRefGoogle Scholar
Geange, SW, Pledger, S, Burns, KC and Shima, JS (2011) A unified analysis of niche overlap incorporating data of different types. Methods in Ecology and Evolution 2, 175184.10.1111/j.2041-210X.2010.00070.xCrossRefGoogle Scholar
Gonçalves, GL and Vitorino, BD (2014) Comportamento alimentar de aves em cecropia pachystachya Trécul (Urticaceae) em um ambiente urbano no município de Luz, Minas Gerais, Brasil. Biota Amazonia 4, 100105.10.18561/2179-5746/biotaamazonia.v4n3p100-105CrossRefGoogle Scholar
Gotelli, NJ and McCabe, DJ (2002) Species co-occurrence: a meta-analysis of J. M. Diamond’s assembly rules model. Ecology 83, 20912096.10.1890/0012-9658(2002)083[2091:SCOAMA]2.0.CO;2CrossRefGoogle Scholar
Hazell, RJ, Sam, K, Sreekar, R, Yama, S, Koagouw, W, Stewart, AJ, and Peck, MR (2023) Bird preferences for fruit size, but not color, vary in accordance with fruit traits along a tropical elevational gradient. Ecology and Evolution 13, e9835.10.1002/ece3.9835CrossRefGoogle Scholar
Hejl, SJ and Verner, J (1990) Within season and yearly variations in avian foraging locations. Studies in Avian Biology 13, 202209.Google Scholar
Horn, HS (1966) Measurement of “overlap” in comparative ecological studies. American Naturalist 100, 419424.10.1086/282436CrossRefGoogle Scholar
Hothorn, T, Hornik, K, van de Wiel, MA and Zeileis, A (2008) Implementing a class of permutation tests: the coin package. Journal of Statistical Software 28, 123.10.18637/jss.v028.i08CrossRefGoogle Scholar
Howe, HF (1993) Specialized and generalized dispersal systems: where does ‘the paradigm’stand? Vegetatio 107, 313.10.1007/BF00052208CrossRefGoogle Scholar
Hubbell, SP (2001) The Unified Neutral Theory of Biodiversity and Biogeography (Vol. 32). Princeton: Princeton University Press.Google Scholar
Hutchinson, GE (1957) Concluding remarks. Cold Spring Harbor Symposia on Quantitative Biology 22, 415427.10.1101/SQB.1957.022.01.039CrossRefGoogle Scholar
Isler, MI and Isler, PR (1987) The Tanagers: Natural History, Distribution, and Identification. Washington: Smithsonian Institution Press.Google Scholar
Kent, CM and Sherry, TW (2020) Behavioral niche partitioning reexamined: Do behavioral differences predict dietary differences in warblers? Ecology 101, e03077.10.1002/ecy.3077CrossRefGoogle ScholarPubMed
Lloyd, H (2008) Foraging ecology of high Andean insectivorous birds in remnant Polylepis forest patches. The Wilson Journal of Ornithology 120, 531544.10.1676/07-059.1CrossRefGoogle Scholar
Machado-de-Souza, T, Campos, RP, Devoto, M and Varassin, IG (2019) Local drivers of the structure of a tropical bird-seed dispersal network. Oecologia 189, 421433.CrossRefGoogle ScholarPubMed
Malanotte, ML, Machado-de-Souza, T, Campos, RP, Petkowicz, CL and Varassin, IG (2019) How do fruit productivity, fruit traits and dietary specialization affect the role of birds in a mutualistic network? Journal of Tropical Ecology, 35, 213222.10.1017/S0266467419000178CrossRefGoogle Scholar
Manhães, MA (2003a) Dieta de Traupíneos (Passeriformes, Emberizidae) no Parque Estadual do Ibitipoca, Minas Gerais, Brasil. Iheringia, Série Zoologia 93, 5973.10.1590/S0073-47212003000100007CrossRefGoogle Scholar
Manhães, MA (2003b) Variação sazonal da dieta e do comportamento alimentar de traupíneos (Passeriformes: Emberizidae) em Ibitipoca, Minas Gerais, Brasil. Ararajuba 11, 4555.Google Scholar
Mansor, MS and Mohd Sah, SA (2012) Foraging patterns reveal niche separation in tropical insectivorous birds. Acta Ornithologica, 47, 2736.CrossRefGoogle Scholar
Maynard, LD, Ananda, A, Sides, MF, Burk, H and Whitehead, SR (2019) Dietary resource overlap among three species of frugivorous bat in Costa Rica. Journal of Tropical Ecology 35, 165172.10.1017/S0266467419000129CrossRefGoogle Scholar
Menini Neto, L and Salimena, FRG (2013) História do Arraial de Conceição de Ibitipoca e a criação do Parque Estadual do Ibitipoca. In Forzza, RC, Menini Neto, L, Salimena, FRG and Zappi, DC (eds), Flora do Parque Estadual do Ibitipoca e seu Entorno. Juiz de Fora: Editora UFJF, pp. 1526.Google Scholar
Moermond, TC (1990) A functional approach to foraging: morphology, behavior and the capacity to exploit. Studies in Avian Biology 13, 427430.Google Scholar
Moermond, TC and Denslow, JS (1983) Fruit choice in Neotropical birds: effects of fruit type and accessibility on selectivity. Journal of Animal Ecology 52, 407420.10.2307/4562CrossRefGoogle Scholar
Moermond, TC and Denslow, JS (1985) Neotropical avian frugivores: patterns of behavior, morphology, and nutrition, with consequences for fruit selection. Ornithological Monographs 36, 865897.10.2307/40168322CrossRefGoogle Scholar
Mohd-Azlan, J, Noske, RA and Lawes, MJ (2014) Resource partitioning by mangrove bird communities in North Australia. Biotropica 46, 331340.10.1111/btp.12108CrossRefGoogle Scholar
Munin, RL, Fischer, E and Gonçalves, F (2012) Food habits and dietary overlap in a phyllostomid bat assemblage in the Pantanal of Brazil. Acta Chiropterologica 14, 195204.CrossRefGoogle Scholar
Naoki, K (2007) Arthropod resource partitioning among omnivorous Tanagers (Tangara spp.) in Western Ecuador. Auk 124, 197209.10.1093/auk/124.1.197CrossRefGoogle Scholar
Oksanen, J, Simpson, G, Blanchet, F, Kindt, R, Legendre, P, Minchin, P, O’Hara, R, Solymos, P, Stevens, M, Szoecs, E, Wagner, H, Barbour, M, Bedward, M, Bolker, B, Borcard, D, Carvalho, G, Chirico, M, De Caceres, M, Durand, S, Evangelista, H, FitzJohn, R, Friendly, M, Furneaux, B, Hannigan, G, Hill, M, Lahti, L, McGlinn, D, Ouellette, M, Ribeiro Cunha, E, Smith, T, Stier, A, Ter Braak, C and Weedon, J (2022) _vegan: Community Ecology Package_. R package version 2.6-4, <https://CRAN.R-project.org/package=vegan>..>Google Scholar
Oliveira-Filho, AT, Fontes, MAL, Viana, PL, Valente, ASM, Salimena, FRG and Ferreira, FM (2013) O mosaico de fitofisionomias do Parque Estadual do Ibitipoca. In Forzza, RC, Menini Neto, L, Salimena, FRG and Zappi, DC (eds), Flora do Parque Estadual do Ibitipoca e seu Entorno. Juiz de Fora: Editora UFJF, pp. 5393.Google Scholar
Oyugi, JO, Brown, JS and Whelan, CJ (2012) Foraging behavior and coexistence of two sunbird species in a Kenyan woodland. Biotropica 44, 262269.10.1111/j.1744-7429.2011.00785.xCrossRefGoogle Scholar
Pearson, DL (1977) Ecological relationships among small antbirds in Amazonian bird communities. Auk 94, 283292.Google Scholar
Perez-Lamarque, B, Petrolli, R, Strullu-Derrien, C, Strasberg, D, Morlon, H, Selosse, MA and Martos, F (2022) Structure and specialization of mycorrhizal networks in phylogenetically diverse tropical communities. Environmental Microbiome 17, 119.10.1186/s40793-022-00434-0CrossRefGoogle ScholarPubMed
Quintero, E, Pizo, MA and Jordano, P (2020) Fruit resource provisioning for avian frugivores: the overlooked side of effectiveness in seed dispersal mutualisms. Journal of Ecology 108, 13581372.10.1111/1365-2745.13352CrossRefGoogle Scholar
Quitián, M, Santillán, V, Espinosa, CI, Homeier, J, Böhning-Gaese, K, Schleuning, M and Neuschulz, EL (2018) Elevation-dependent effects of forest fragmentation on plant–bird interaction networks in the tropical Andes. Ecography 41, 14971506.10.1111/ecog.03247CrossRefGoogle Scholar
Ramos-Robles, M, Dáttilo, W, Díaz-Castelazo, C and Andresen, E (2018) Fruit traits and temporal abundance shape plant-frugivore interaction networks in a seasonal tropical forest. The Science of Nature 105, 111.10.1007/s00114-018-1556-yCrossRefGoogle Scholar
R Core Team (2023) R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing.Google Scholar
Remsen, JV and Robinson, SK (1990) A classification scheme for foraging behavior of birds in terrestrial habitats. Studies in Avian Biology 13, 144160.Google Scholar
Ridgely, RS and Tudor, G (1994) The Birds of South America, Volume 1: the Oscine Passerines. Austin: University of Texas Press.Google Scholar
Riegert, J, Fainová, D, Antczak, M, Sedláček, O, Hořák, D, Reif, J and Pešata, M (2011) Food niche differentiation in two syntopic sunbird species: a case study from the Cameroon Mountains. Journal of ornithology 152, 819825.10.1007/s10336-011-0650-0CrossRefGoogle Scholar
Robinson, SK and Holmes, RT (1982) Foraging behavior of forest birds: the relationships among search tactics, diet, and habitat structure. Ecology 63, 19181931.10.2307/1940130CrossRefGoogle Scholar
Rodrigues, M (1995) Spatial distribution and food utilization among tanagers in southeastern Brazil (Passeriformes: Emberizidae). Ararajuba 3, 2732.Google Scholar
Rodela, LG (1998) Cerrados de altitude e campos rupestres do Parque Estadual do Ibitipoca, sudeste e Minas Gerais: distribuição e florística por subfisionomias de vegetação. Revista do Departamento de Geografia 12, 163189.Google Scholar
Rosenberg, KV (1993) Diet selection on Amazonian antwrens: consequences of substrate specialization. Auk 110, 361375.Google Scholar
Sebastián-González, E (2017) Drivers of species’ role in avian seed-dispersal mutualistic networks. Journal of Animal Ecology 86, 878887.10.1111/1365-2656.12686CrossRefGoogle ScholarPubMed
Schleuning, M, Fründ, J, Klein, A-M, Abrahamczyk, S, Alarcón, R, Albrecht, M, Andersson, GKS, Bazarian, S, Böhning-Gaese, K, Bommarco, R, Dalsgaard, B, Dehling, DM, Gotlieb, A, Hagen, M, Hickler, T, Holzschuh, A, Kaiser-Bunbury, CN, Kreft, H, Morris, RJ, Sandel, B, Sutherland, WJ, Svenning, J-C, Tscharntke, T, Watts, S, Weiner, CN, Werner, M, Williams, NM, Winqvist, C, Dormann, CF and Blüthgen, N (2012) Specialization of mutualistic interaction networks decreases toward tropical latitudes. Current Biology 22, 19251931.CrossRefGoogle ScholarPubMed
Silva, AM and Melo, C (2013) Overlap and resource sharing in coteries of fruit-eating birds. Journal of Tropical Ecology 29, 409416.10.1017/S0266467413000539CrossRefGoogle Scholar
Silva, GBMD and Pedroni, F (2014) Frugivoria por aves em área de cerrado no município de Uberlândia, Minas Gerais. Revista Árvore 38, 433442.10.1590/S0100-67622014000300005CrossRefGoogle Scholar
Silva, WR (1980) Notas sobre o comportamento alimentar de três espécies de traupídeos (Passeriformes: Thraupidae) em Cecropia concolor na região de Manaus. Acta Amazonica 10, 427429.10.1590/1809-43921980102427CrossRefGoogle Scholar
Snow, BK and Snow, DW (1971) The feeding ecology of tanagers and honeycreepers in Trinidad. Auk 88, 291322.10.2307/4083882CrossRefGoogle Scholar
Stanley, MC and Lill, A (2001) Accessibility as a factor influencing frugivory by silvereyes (Zosterops lateralis): field comparisons with aviary experiments. Australian Journal of Zoology 49, 171182.10.1071/ZO00085CrossRefGoogle Scholar
Terborgh, J and Diamond, JM (1970) Niche overlap in feeding assemblages of New Guinea birds. Wilson Bulletin 82, 2952.Google Scholar
Vázquez, DP, Melian, CJ, Williams, NM, Blüthgen, N, Krasnov, BR and Poulin, R (2007) Species abundance and asymmetric interaction strength in ecological networks. Oikos 116, 11201127.10.1111/j.0030-1299.2007.15828.xCrossRefGoogle Scholar
Whelan, CJ (2001) Foliage structure influences foraging of insectivorous forest birds: An experimental study. Ecology 82, 219231.10.1890/0012-9658(2001)082[0219:FSIFOI]2.0.CO;2CrossRefGoogle Scholar
Wheelwright, NT and Janson, CH (1985) Colors of fruit displays of bird-dispersed plants in two tropical forests. American Naturalist 126, 777799.10.1086/284453CrossRefGoogle Scholar
Wiens, JJ and Graham, CH (2005) Niche conservatism: integrating evolution, ecology, and conservation biology. Annual Review of Ecology, Evolution and Systematics 36, 519539.10.1146/annurev.ecolsys.36.102803.095431CrossRefGoogle Scholar
Winck, GR, Hatano, F, Vrcibradic, D, Van Sluys, M and Rocha, CF (2016) Lizard assemblage from a sand dune habitat from southeastern Brazil: a niche overlap analysis. Anais da Academia Brasileira de Ciências 88, 677687.10.1590/0001-3765201620150335CrossRefGoogle Scholar
Supplementary material: File

Manhães supplementary material

Manhães supplementary material
Download Manhães supplementary material(File)
File 25.2 KB