Hostname: page-component-65f69f4695-tzd6m Total loading time: 0 Render date: 2025-06-26T17:37:08.425Z Has data issue: false hasContentIssue false

Incomplete Bessel and Struve functions

Published online by Cambridge University Press:  24 October 2008

W. H. Steel
Affiliation:
Division of Physics, National Standards Laboratory Commonwealth Scientific and Industrial Research Organization Sydney
Joan Y. Ward
Affiliation:
Division of Physics, National Standards Laboratory Commonwealth Scientific and Industrial Research Organization Sydney

Abstract

Some properties are given of the incomplete Bessel and Struve functions defined by a Poisson-type integral. These functions are tabulated for the orders 0 and 1.

Information

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1956

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

REFERENCES

(1) Brauer, P. and Brauer, E. Z. angew. Math. Mech. 21 (1941), 177.Google Scholar
(2) Bruce, C. F. Aust. J. Phys. 8 (1955), 224.Google Scholar
(3) Erdélyi, A. Math. Tab., Wash., 8 (1954), 123.Google Scholar
(4) Gandy, R. O. Proc. phys. Soc. B, 67 (1954), 825.Google Scholar
(5) Hartree, D. R. Proc. Camb. phil. Soc. 50 (1954), 567.Google Scholar
(6) Harvard University Computation Lab. Annals, pp. 18, 19, ‘Tables of Generalized Sine-and Cosine-Integral Functions’ (1949).Google Scholar
(7) Hopkins, H. H. Proc. roy. Soc. A, 231 (1955), 91.Google Scholar
(8) Nijboer, B. R. A. Physica, 's Grav., 10 (1943), 679.Google Scholar
(9) Steel, W. H. Opt. Acta (in press).Google Scholar
(10) Thornton, B. S. Aust. J. Phys. 8 (1955), 241.Google Scholar
(11) Watson, G. N. Theory of Bessel functions, 2nd ed. (Cambridge University Press, 1944).Google Scholar