Hostname: page-component-5b777bbd6c-cp4x8 Total loading time: 0 Render date: 2025-06-19T08:53:58.982Z Has data issue: false hasContentIssue false

Integral Zariski dense surface groups in $\textrm{SL}(n,\mathbf{R})$

Part of: Lie groups

Published online by Cambridge University Press:  13 May 2025

MICHAEL ZSHORNACK*
Affiliation:
Department of Mathematics, Northwestern University, 2033 Sheridan Road, Evanston, IL 60208, U.S.A. e-mail: zshornack@northwestern.edu

Abstract

Given a number field K, we show that certain K-integral representations of closed surface groups can be deformed to being Zariski dense while preserving many useful properties of the original representation. This generalises a method due to Long and Thistlethwaite who used it to show that thin surface groups in $\textrm{SL}(2k+1,\mathbf{Z})$ exist for all k.

MSC classification

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Cambridge Philosophical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Alessandrini, D., Lee, G., and Schaffhauser, F.. Hitchin components for orbifolds. J. Eur. Math. Soc. 25 (40) (2023), 12851347.CrossRefGoogle Scholar
Audibert, J. Zariski-dense surface groups in non-uniform lattices of split real Lie groups. Preprint, ArXiv: 2206.01123 (2022).Google Scholar
Audibert, J. Zariski-dense Hitchin representations in uniform lattices. Preprint, ArXiv: 2302.09837 (2023).Google Scholar
Bourgain, J. and Gamburd, A.. Uniform expansion bounds for Cayley graphs of $\textrm{SL}_2(\mathbf{F}_p)$ . Ann. of Math. 167 (2008), 625642.CrossRefGoogle Scholar
Bourgain, J., Gamburd, A., and Sarnak, P.. Affine linear sieve, expanders, and sum-product. Invent. Math. 179 (2010), 559644.CrossRefGoogle Scholar
Chavdarov, N.. The generic irreducibility of the numerator of the zeta function in a family of curves with large monodromy. Duke Math. J. 87 (1997), 151180.CrossRefGoogle Scholar
Cooper, D. and Futer, D.. Ubiquitous quasi-Fuchsian surfaces in cusped hyperbolic 3-manifolds. Geom. Topol. 23 (2019), 241298.CrossRefGoogle Scholar
Culler, M.. Lifting representations to covering groups. Adv. Math. 59 (1986), 6470.CrossRefGoogle Scholar
Fuchs, E. and Rivin, I.. Generic thinness in finitely generated subgroups of $\textrm{SL}(n,\mathbf{Z})$ . Internat. Math. Res. Notices 2017 (2016), 53855414.Google Scholar
Guichard, O.. Zariski closures of positive and maximal representations. Preprint.Google Scholar
Hamenstädt, U.. Incompressible surfaces in rank one locally symmetric spaces. Geom. Funct. Anal. 25 (2015), 815859.CrossRefGoogle Scholar
Hitchin, N.. Lie groups and Teichmüller space. Topology 31 (1992), 449473.CrossRefGoogle Scholar
Kahn, J., F. c. Labourie, and S. Mozes. Surface groups in uniform lattices of some semi-simple groups. Acta Math. 232 (2024), 79220.CrossRefGoogle Scholar
Kahn, J. and Markovic, V.. Immersing almost geodesic surfaces in a closed hyperbolic three manifold. Ann. of Math. (2) 175 (2012), 11271190.CrossRefGoogle Scholar
Kahn, J. and Wright, A.. Nearly Fuchsian surface subgroups of finite covolume Kleinian groups. Duke Math. J. 170 (2021), 503573.CrossRefGoogle Scholar
Labourie, F.. Anosov flows, surface groups and curves in projective space. Invent. Math. 165 (2006), 51114.CrossRefGoogle Scholar
Long, D. D. and Reid, A. W.. Thin surface subgroups in cocompact lattices in $\text{SL}(3,\mathbf{R})$ . Illinois J. Math. 60 (2016), 3953.CrossRefGoogle Scholar
Long, D. D. and Thistlethwaite, M. B.. Zariski dense surface subgroups in $\text{SL}(4,\mathbf{Z})$ . Experiment. Math. 27 (2018), 8292.CrossRefGoogle Scholar
Long, D. D. and Thistlethwaite, M. B.. Zariski dense surface groups in ${\textrm{SL}}(2k+1,\mathbf{Z})$ . Geom. Topol. 28 (2024), 11531166.CrossRefGoogle Scholar
Margulis, G. Discrete subgroups of semisimple Lie groups, Ergeb. Math. Grenzgeb. vol 17. (Springer-Verlag Berlin Heidelberg, 1991)CrossRefGoogle Scholar
Matthews, C. R., Vaserstein, L. N., and Weisfeiler, B.. Congruence properties of Zariski-dense subgroups I. Proc. London. Math. Soc. s3-48 (1984), 514532.CrossRefGoogle Scholar
Morris, D. W. Introduction to Arithmetic Groups (Deductive Press, 2015).Google Scholar
Sambarino, A. Infinitesimal Zariski closures of positive representations J. Differential Geom. 128 (2) (2024), 861901.CrossRefGoogle Scholar
Sarnak, P.. Notes on thin matrix groups. In Thin Groups and Superstrong Approximation. Math. Sci. Res. Inst. Publ. vol. 61 (Cambridge University Press, 2014), pp. 343362.CrossRefGoogle Scholar
Scott, P.. Subgroups of surface groups are almost geometric. J. London Math. Soc. s2-17 (1978), 555565.CrossRefGoogle Scholar
Suzuki, M. Group Theory I. Grundlehren Math. Wiss. vol. 247. (Springer-Verlag Berlin Heidelberg, 1982).CrossRefGoogle Scholar
Weisfeiler, B.. Strong approximation for Zariski-dense subgroups of semi-simple algebraic groups. Ann. of Math. 120 (1984), 271315.CrossRefGoogle Scholar