We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Let P(x) denote a polynomial with degree n and integer coefficients. By the height h of P we mean the maximum of the absolute values of the coefficients.
Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)
Article purchase
Temporarily unavailable
References
REFERENCES
(1)
(1)Baker, A.On some Diophantine inequalities involving the exponential function. Canadian J. Math.17 (1965), 616–626.CrossRefGoogle Scholar
(2)
(2)Baker, A.On a theorem of Sprindžuk. Proc. Roy. Soc. London A292 (1966), 92–104.Google Scholar
(3)
(3)Baker, A.Transcendental number theory (CambridgeUniversity Press, 1975).CrossRefGoogle Scholar
(4)
(4)Baker, A. and Schmidt, W. M.Diophantine approximation and Hausdorff dimension. Proc. London Math. Soc.21 (1970), 1–11.CrossRefGoogle Scholar
(5)
(5)Besicovitch, A. S.Sets of fractional dimensions (IV): On rational approximation to real numbers. J. London Math. Soc.9 (1934), 126–131.CrossRefGoogle Scholar
(6)
(6)Cassels, J. W. S.An introduction to Diophantine approximation (Cambridge University Press, 1957).Google Scholar
(9)Kasch, F.Über eine metriuche Eigenschaft der S-Zahlen. Math. Zeit.70 (1958), 263–270.Google Scholar
(10)
(10)Khintchine, A. Ya. [Khinchin, A. YA.] Continued fractions (Chicago University Press, 1964).Google Scholar
(11)
(11)Schmidt, W. M.Metrische Sätze über simultane Approximation abhängiger Grössen. Monatsh. Math.68 (1964), 154–166.CrossRefGoogle Scholar
(12)
(12)Schneider, Th.Einführung in die transzendenten Zahlen (Springer Verlag, Berlin, Göttingen, Heidelberg, 1957).CrossRefGoogle Scholar
(13)
(13)Sprindžuk, V. G.Proof of the conjecture of Mahler on the measure of the set of S-numbers. Izv. Akad. Nauk SSSR (ser. mat.)29 (1965), 379–436 (in Russian).Google Scholar
(14)
(14)Sprindžuk, V. G.Metric theory of diophantine approximations, Current problems of analytic number theory. In Proc. Summer School on Analytic Number Theory, Minsk, 1972, 178–198, (Izd. Nauka i Tekhnika, Minsk, 1974) (in Russian).Google Scholar
(15)
(15)Sprindžuk, V. G.Metric theory of diophantine approximations (V. H. Winston, Washington, D.C., 1979).Google Scholar