No CrossRef data available.
Published online by Cambridge University Press: 01 July 2008
Let (R, m) be a d-dimensional Cohen–Macaulay local ring. In this paper we prove, in a very elementary way, an upper bound of the first normalized Hilbert coefficient of a m-primary ideal I ⊂ R that improves all known upper bounds unless for a finite number of cases, see Remark 2.3. We also provide new upper bounds of the Hilbert functions of I extending the known bounds for the maximal ideal.