No CrossRef data available.
Published online by Cambridge University Press: 23 December 2024
Different two-dimensional structural units of layered silicate minerals have different chemical and reaction properties. Sulfuric acid solution mineral-leaching systems with pH of 2.0, 4.0 and 6.0 were constructed to investigate the differential dissolution properties of lizardite (1:1 type), chlorite and talc (2:1 type minerals) and the chemical kinetic mechanism of the mineral–water interface reaction. The results showed that the dissolution efficiency of Mg in lizardite is higher than that of chlorite and talc in acidic environments (pH of 2.0, 4.0 and 6.0). The dissolution efficiency of Mg in chlorite is greater than that of talc for acidic environments when pH is 2.0 and 4.0, but chlorite and talc have nearly identical Mg dissolution efficiencies at a pH of 6.0. This phenomenon is related to the defect site on the tetrahedral sheet of chlorite and is controlled by the change of the dissolution efficiency of Al. The dissolution rates of Mg and Si in lizardite, chlorite and talc decreased with the increase of reaction time in the acidic medium for pH = 2.0, 4.0 and 6.0, and there are two linear dissolution trends at different pH values. The dissolution efficiencies of Mg and Si in lizardite, chlorite and talc were simulated and predicted by establishing a logistic model. It was found that the maximum dissolution efficiency of 2:1 type minerals chlorite and talc are only 4.72% and 1.58%, which is much lower than that of 1:1 type lizardite. This research on the reaction mechanism and dissolution kinetics of lizardite, chlorite and talc not only helps to deepen the understanding of the mineral–water interface interaction, but also reveals the different rules for Mg, Si and Al dissolution in different types of trioctahedral mineral–water interface reactions, and provides a crystal chemical basis for the ion migration and action mechanism of minerals.
Guest Editor: Qingze Chen
This paper is part of a thematic set on Nanominerals and mineral nanoparticles