Hostname: page-component-5b777bbd6c-v47t2 Total loading time: 0 Render date: 2025-06-20T16:46:55.053Z Has data issue: false hasContentIssue false

Turtle species extinction across the Cretaceous/Paleogene boundary

Published online by Cambridge University Press:  10 December 2024

Evangelos Vlachos*
Affiliation:
CONICET and Museo Paleontológico Egidio Feruglio, 9100 Trelew, Chubut, Argentina
*
Corresponding author: Evangelos Vlachos; Email: evlacho@mef.org.ar

Abstract

The last mass extinction event some 66 million years ago at the Late Cretaceous/Paleogene boundary caused the extinction of many clades, including the non-avian dinosaurs. Turtles, as well as several other vertebrate clades, survived. However, the debate about whether the diversity of turtles was affected during this event is still ongoing. Here, I calculate a global turtle diversity curve at the species level that shows that the diversity of turtle species was already in decline since the Campanian, before the extinction event, and was further reduced during the Danian. The sample coverage of turtle occurrences at the stage level is also calculated and discussed.

Type
Article
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press on behalf of Paleontological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Literature Cited

Alroy, J. 2008. Dynamics of origination and extinction in the marine fossil record. Proceedings of the National Academy of Sciences USA 105(Suppl. 1):1153611542.CrossRefGoogle ScholarPubMed
Anquetin, J., Püntener, C., and Joyce, W. G.. 2017. A review of the fossil record of turtles of the clade Thalassochelydia. Bulletin of the Peabody Museum of Natural History 58:317369.CrossRefGoogle Scholar
Augustin, F. J., Csiki-Sava, Z., Matzke, A. T., Botfalvai, G., and Rabi, M.. 2021. A new latest Cretaceous pleurodiran turtle (Testudinata: Dortokidae) from the Haţeg Basin (Romania) documents end-Cretaceous faunal provinciality and selective survival during the K-Pg extinction. Journal of Systematic Palaeontology 19:10591081.CrossRefGoogle Scholar
Brusatte, S. L., Butler, R. J., Barrett, P. M., Carrano, M. T., Evans, D. C., Lloyd, G. T., Mannion, P. D., et al. 2015. The extinction of the dinosaurs. Biological Reviews 90:628642.CrossRefGoogle ScholarPubMed
Cadena, E., and Joyce, W. G.. 2015. A review of the fossil record of turtles of the clades Platychelyidae and Dortokidae. Bulletin of the Peabody Museum of Natural History 56:320.CrossRefGoogle Scholar
Chao, A., and Jost, L.. 2012. Coverage-based rarefaction and extrapolation: standardizing samples by completeness rather than size. Ecology 93:25332547.CrossRefGoogle ScholarPubMed
Cleary, T. J., Benson, R. B., Holroyd, P. A., and Barrett, P. M.. 2020. Tracing the patterns of non-marine turtle richness from the Triassic to the Palaeogene: from origin to global spread. Palaeontology 63:753774.CrossRefGoogle Scholar
Close, R. A., Evers, S. W., Alroy, J., and Butler, R. J.. 2018. How should we estimate diversity in the fossil record? Testing richness estimators using sampling-standardised discovery curves. Methods in Ecology and Evolution 9:13861400.CrossRefGoogle Scholar
Condamine, F. L., Guinot, G., Benton, M. J., and Currie, P. J.. 2021. Dinosaur biodiversity declined well before the asteroid impact, influenced by ecological and environmental pressures. Nature Communications 12:3833.CrossRefGoogle ScholarPubMed
de la Fuente, M. S., Zacarías, G. G., and Vlachos, E.. 2018. A review of the fossil record of South American turtles of the clade Testudinoidea. Bulletin of the Peabody Museum of Natural History 59:269286.CrossRefGoogle Scholar
Georgalis, G. L., and Joyce, W. G.. 2017. A review of the fossil record of Old World turtles of the clade Pan-Trionychidae. Bulletin of the Peabody Museum of Natural History 58:115208.CrossRefGoogle Scholar
Georgalis, G. L., Macaluso, L., and Delfino, M.. 2021. A review of the fossil record of Afro-Arabian turtles of the clade Testudinoidea. Bulletin of the Peabody Museum of Natural History 62:4378.CrossRefGoogle Scholar
Hendricks, J. R., Saupe, E. E., Myers, C. E., Hermsen, E. J., and Allmon, W. D.. 2014. The generification of the fossil record. Paleobiology 40:511528.CrossRefGoogle Scholar
Holroyd, P. A., Wilson, G. P., Hutchison, J. H., Clemens, W. A., Horner, J. R., and Hartman, J. H.. 2014. Temporal changes within the latest Cretaceous and early Paleogene turtle faunas of northeastern Montana. Geological Society of America Special Paper 503:299312.Google Scholar
Hutchison, J. H., and Archibald, J. D.. 1986. Diversity of turtles across the Cretaceous/Tertiary boundary in northeastern Montana. Palaeogeography, Palaeoclimatology, Palaeoecology 55:122.CrossRefGoogle Scholar
Joyce, W. G. 2014. A review of the fossil record of turtles of the clade Pan-Carettochelys. Bulletin of the Peabody Museum of Natural History 55:333.CrossRefGoogle Scholar
Joyce, W. G. 2016. A review of the fossil record of turtles of the clade Pan-Chelydridae. Bulletin of the Peabody Museum of Natural History 57:2156.CrossRefGoogle Scholar
Joyce, W. G. 2017. A review of the fossil record of basal Mesozoic turtles. Bulletin of the Peabody Museum of Natural History 58:65113.CrossRefGoogle Scholar
Joyce, W. G., and Anquetin, J.. 2019. A review of the fossil record of nonbaenid turtles of the clade Paracryptodira. Bulletin of the Peabody Museum of Natural History 60:129155.CrossRefGoogle Scholar
Joyce, W. G., and Bourque, J. R.. 2016. A review of the fossil record of turtles of the clade Pan-Kinosternoidea. Bulletin of the Peabody Museum of Natural History 57:5795.CrossRefGoogle Scholar
Joyce, W. G., and Lyson, T. R.. 2015. A review of the fossil record of turtles of the clade Baenidae. Bulletin of the Peabody Museum of Natural History 56:147183.CrossRefGoogle Scholar
Kocsis, Á. T., Reddin, C. J., Alroy, J., and Kiessling, W.. 2019. The R package divDyn for quantifying diversity dynamics using fossil sampling data. Methods in Ecology and Evolution 10:735743.CrossRefGoogle Scholar
Kocsis, A. T., Reddin, C. J., and Kiessling, W.. 2022. Handout to the R package divDyn v0. 8.2 for diversity dynamics using fossil sampling data. https://cran.r-project.org/web/packages/divDyn/vignettes/handout.pdf, accessed 28 February 2023Google Scholar
Lawver, D. R., and Jackson, F. D.. 2014. A review of the fossil record of turtle reproduction: eggs, embryos, nests and copulating pairs. Bulletin of the Peabody Museum of Natural History 55:215236.CrossRefGoogle Scholar
Linnaeus, C. 1758. Systema naturae per regna tria naturae, secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis. Tomus I. Editio decima, reformata. Holmiae [= Stockholm]: L. Salvii.Google Scholar
Lyson, T. R, and Joyce, W. G.. 2009. A revision of Plesiobaena (Testudines: Baenidae) and an assessment of baenid ecology across the K/T boundary. Journal of Paleontology 83:833853.CrossRefGoogle Scholar
Lyson, T. R, Joyce, W. G., Knauss, G. E., and Pearson, D. A.. 2011. Boremys (Testudines, Baenidae) from the latest Cretaceous and Early Paleocene of North Dakota: an 11-million-year range extension and an additional K/T survivor. Journal of Vertebrate Paleontology 21:729737.CrossRefGoogle Scholar
Maniel, I. J., and de la Fuente, M. S.. 2016. A review of the fossil record of turtles of the clade Pan-Chelidae. Bulletin of the Peabody Museum of Natural History 57:191227.CrossRefGoogle Scholar
Marshall, C. R. 2022. Forty years later: the status of the “Big Five” mass extinctions. Cambridge Prisms: Extinction 1:e5.Google Scholar
Nicholson, D. B., Holroyd, P. A., Benson, R. B., and Barrett, P. M.. 2015. Climate-mediated diversification of turtles in the Cretaceous. Nature Communications 6:7848.CrossRefGoogle ScholarPubMed
Pereira, A. G., Antonelli, A., Silvestro, D., and Faurby, S.. 2024. Two major extinction events in the evolutionary history of turtles: one caused by an asteroid, the other by hominins. American Naturalist 203. https://doi.org/10.1086/729604.CrossRefGoogle ScholarPubMed
Raup, D. M., and Sepkoski, J. J. Jr. 1982. Mass extinctions in the marine fossil record. Science 215:15011503.CrossRefGoogle ScholarPubMed
R Core Team. 2024. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org.Google Scholar
Sakamoto, M., Benton, M. J., and Venditti, C.. 2016. Dinosaurs in decline tens of millions of years before their final extinction. Proceedings of the National Academy of Sciences USA 113:50365040.CrossRefGoogle ScholarPubMed
Sterli, J. 2015. A review of the fossil record of Gondwanan turtles of the clade Meiolaniformes. Bulletin of the Peabody Museum of Natural History 56:2145.CrossRefGoogle Scholar
Vitek, N. S., and Joyce, W. G.. 2015. A review of the fossil record of New World turtles of the clade Pan-Trionychidae. Bulletin of the Peabody Museum of Natural History 56:185244.CrossRefGoogle Scholar
Vlachos, E. 2018. A review of the fossil record of North American turtles of the clade Pan-Testudinoidea. Bulletin of the Peabody Museum of Natural History 59:394.CrossRefGoogle Scholar
Vlachos, E., Randolfe, E., Sterli, J., and Leardi, J. M.. 2018. Changes in the diversity of turtles (Testudinata) in South America from the Late Triassic to the present. Ameghiniana 55:619643.CrossRefGoogle Scholar
Wiese, R., Renaudie, J., and Lazarus, D. B.. 2016. Testing the accuracy of genus-level data to predict species diversity in Cenozoic marine diatoms. Geology 44:10511054.CrossRefGoogle Scholar