Hostname: page-component-5b777bbd6c-ks5gx Total loading time: 0 Render date: 2025-06-19T03:47:05.391Z Has data issue: false hasContentIssue false

Germplasm characterization of Indian avocados based on morphological and biochemical traits

Published online by Cambridge University Press:  16 June 2025

Muralidhara B. M.*
Affiliation:
ICAR-Indian Institute of Horticultural Research, Bengaluru, India
Sakthivel T.
Affiliation:
ICAR-Indian Institute of Horticultural Research, Bengaluru, India
Karunakaran G.
Affiliation:
ICAR-Indian Institute of Horticultural Research, Bengaluru, India
K. S. Shivashankara
Affiliation:
ICAR-Indian Institute of Horticultural Research, Bengaluru, India
Keshava Rao Vala
Affiliation:
ICAR-Indian Institute of Horticultural Research, Bengaluru, India
Venugopalan R.
Affiliation:
ICAR-Indian Institute of Horticultural Research, Bengaluru, India
Siddanna Savadi
Affiliation:
ICAR-Directorate of Cashew Research, Puttur, India
Venkataravanappa V.
Affiliation:
ICAR-Indian Institute of Horticultural Research, Bengaluru, India
Karthik Nayak V. S.
Affiliation:
ICAR-Indian Institute of Horticultural Research, Bengaluru, India
Lakshmana Reddy D. C.
Affiliation:
ICAR-Indian Institute of Horticultural Research, Bengaluru, India
Honnabyraiah M. K.
Affiliation:
College of Horticulture, University of Horticultural Sciences, Bagalkote, India
*
Corresponding author: B.M. Muralidhara; Email: muralidhara.bm@gmail.com

Abstract

Avocado is a delicious fruit crop having great economic importance. Understanding the extent of variability present in the existing germplasm is important to identify genotypes with specific traits and their utilization in crop improvement. The information on genetic variability with respect to morphological and biochemical traits in Indian avocados is limited and as it has hindered genetic improvement of the crop. In the current study, 83 avocado accessions from different regions of India were assessed for important 17 morphological and 8 biochemical traits. The results showed the existence of wide variability for traits such as fruit weight (75.88–934.12 g), pulp weight (48.08–736.19 g), seed weight (6.37–32.62 g), FRAP activity (27.65–119.81 mg AEAC/100 g), total carotenoids (0.96–7.17 mg/100 g), oil content (4.91–25.49%) and crude fibre (6.85–20.75%) in the studied accessions. The first three components of principal component analysis explained 54.79 per cent of total variance. Traits such as fruit weight, pulp weight, seed weight, moisture and oil content contributed more significantly towards total variance compared to other traits. The dendrogram constructed based on Euclidean distance wards minimum variance method divided 83 accessions into two major groups and nine sub clusters suggesting wide variability in the accessions with respect to studied traits. In this study, superior accessions for important traits such as fruit size (PA-102, PA-012), high pulp recovery (PA-036, PA-082,), thick peel (PA-084, PA-043, PA-011, PA-008), high carotenoids (PA-026, PA-096) and high oil content (PA-044, PA-043, PA-046, PA-045) were identified which have potential utility in further crop improvement programmes.

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of National Institute of Agricultural Botany.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Alvarez, GEG, Gutierrez, AML, Valencia, KA, Mossos, PS, Rozo, DLS and Hurtado, NC (2020) Genetic and chemical characterization of avocado commercial cultivars avocado of Risaralda Colombia. Bras. Frutic 42(5), 114. doi:10.1590/0100-29452020593Google Scholar
Amado, DAV, Helmann, GAB, Detoni, AM, Carvalho, SLC, Aguiar, CM, Martin, CA, Tiuman, TS and Cottica, SM (2019) Antioxidant and antibacterial activity and preliminary toxicity analysis of four varieties of avocado (Persea americana Mill.). Brazilian Journal of Food Technology 22, 111. doi:10.1590/1981-6723.04418CrossRefGoogle Scholar
APG. III (2009) An update of the angiosperm phylogeny group classification for the orders and families of flowering plants: APG III. Botanical Journal of the Linnean Society 161(2), 105121. doi:10.1111/j.1095-8339.2009.00996.xCrossRefGoogle Scholar
Ashton, OB, Wong, M, Mc Ghie, TK, Vather, R, Wang, Y, Requejo-Jackman, C, Ramankutty, P and Woolf, AB (2006) Pigments in avocado tissue and oil. Journal of Agricultural and Food Chemistry 54, 1015110158. doi:10.1021/jf061809jCrossRefGoogle ScholarPubMed
Bayram, S, Arslan, MA, Turgutoglu, E and Erkan, M (2012) The performance of some avocado cultivars under Mediterranean coastal conditions in Turkey. Journal of Agriculture, Food and Environment 10, 588592. http://www.isfae.org/scientificjournal.php.Google Scholar
Benzie, IF and Strain, JJ (1996) The ferric reducing ability of plasma (FRAP) as a measure of antioxidant power: The FRAP assay. Analytical Biochemistry 239, 7076. doi:10.1006/abio.1996.0292CrossRefGoogle ScholarPubMed
Bergh, B (1992) The origin, nature, and genetic improvement of the avocado. In. Calif. Avocado Soc. Year Book 76, 6175.Google Scholar
Bergh, B and Ellstrand, N (1986) Taxonomy of the avocado. In. California Avocado Soc. Year Book 70, 135146.Google Scholar
Carvalho, CP, Bernal, EJ, Velasquez, MA and V.j.r, C (2015) Fatty acid content of avocados (Persea americana Mill. cv. Hass) in relation to orchard altitude and fruit maturity stage. Agronomía Colombiana 33(2), 220227.10.15446/agron.colomb.v33n2.49902CrossRefGoogle Scholar
Dreher, ML and Davenport, AJ (2013) Hass avocado composition and potential health effects. Critical Reviews in Food Science and Nutrition 53, 738750.10.1080/10408398.2011.556759CrossRefGoogle ScholarPubMed
Espinosa‐Alonso, LG, Paredes‐Lopez, O, Valdez‐Morales, M and Oomah, BD (2017) Avocado oil characteristics of Mexican creole genotypes. European Journal of Lipid Science and Technology 119, 139. doi:10.1002/ejlt.201600406CrossRefGoogle Scholar
FAO (2023) FAOSTAT. Food and Agriculture Organization of the United Nations. Rome, Italy. http://www.fao.org/faostat/en/#data/QC.Google Scholar
Ghosh, SP (2000) Avocado production in India. In Avocado Production in Asia and Pacific. Bangkok, Thailand: FAO, 2430.Google Scholar
Gomez-Caravaca, AM, Lopez-Cobol, A, Verardo, V, Pasini, F, Caboni, MF, Segura-Carretero, A and Fernandez-Gutierrez, A (2015) Evaluation of phenolic content in avocado fruit and its by-products. Journal of Food Processing & Technology 6, 72.Google Scholar
Gomez-Lopez, VM (2002) Fruit characterization of high oil content avocado varieties. Scientia Agricola 59, 403406. doi:10.1590/S0103-90162002000200030CrossRefGoogle Scholar
Gopinath, PP, Parsad, R, Joseph, B and Adarsh, VS (2020) GRAPES: general Rshiny based analysis platform empowered by statistics. https://www.kaugrapes.com/home. version 1.0.0. doi: 10.5281/zenodo.4923220CrossRefGoogle Scholar
Horwitz, W and Latimer, GW (2007) In Official methods of analysis of AOAC. International. 18th Edn. Association of Official Analytical Chemists. Gaithersburg, MD, 881882. doi:10.3923/rjmp.2017.55.61Google Scholar
Juma, I, Nyomora, A, Hovmalm, HP, Fatih, M, Geleta, M, Carlsson, AS and Ortiz, RO (2020) Characterization of Tanzanian avocado using morphological traits. Diversity 12, 64. doi:10.3390/d12020064CrossRefGoogle Scholar
Knight, RJ, Whiley, WA, Scaffer, B and Wolstenholme, BN (2002) The Avocado: Botany, Production and Uses. Wallingford: CAB Int, 115.Google Scholar
Krumreich, FD, Borges, CD, Mendonça, CRB, Jansen-Alves, C and Zambiazi, RC (2018) Bioactive compounds and quality parameters of avocado oil obtained by different processes. Food Chemistry 257, 376381. doi:10.1016/j.foodchem.2018.03.048CrossRefGoogle ScholarPubMed
Lavi, U, Saada, D, Ragev, I and Lahav, E (2003) Avocado genetics and breeding – present and future. World Avocado Congress 42, 134135.Google Scholar
Lichtenthaler, HK (1987) Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Methods in Enzymology 148, 350382. doi:10.1016/0076-6879(87)48036-1CrossRefGoogle Scholar
Liu, Y, Ge, Y, Zhan, R, Lin, X, Zang, X, Li, Y, Yang, Y and Ma, W (2020) Molecular markers and a quality trait evaluation for assessing the genetic diversity of avocado landraces from China. Agriculture 10, 102. doi:10.3390/agriculture10040102CrossRefGoogle Scholar
Manzur, JP, Fita, A, Prohens, J and Rodriguez-Burruezo, A (2015) Successful wide hybridization and introgression breeding in a diverse set of common peppers (Capsicum annuum) using different cultivated Aji (C. baccatum) accessions as donor parents. PLoS One 10(12), e0144142.10.1371/journal.pone.0144142CrossRefGoogle Scholar
Maynard, AJ (1970) Methods in Food Analysis: physical, Chemical and Instrumental Methods of Analysis, 2nd Edition. San Francisco, London: Academic Press, 845.Google Scholar
Mendez-Zuniga, SM, Corrales-Garcia, JE, Gutierrez-Grijalva, EP, Garcia-Mateos, R, Perez-Rubio, V and Heredia, JB (2019) Fatty acid profile, total carotenoids, and free radical-scavenging from the lipophilic fractions of 12 native Mexican Avocado accessions. Plant Foods for Human Nutrition 74, 501507. doi:10.1007/s11130-019-00766-2CrossRefGoogle ScholarPubMed
Muralidhara, BM, Sakthivel, T, Karunakaran, G, Venugopalan, R, Venkatravanappa, V, Savadi, S, KarthikNayaka, VS, Shivashankara, KS and Honnabyraiah, MK (2023b) Survey, collection and characterization of Indian avocado (Persea Americana Mill.) germplasm for morphological characters. Indian Journal of Agricultural Sciences 93(2), 139144. doi:10.56093/ijas.v93i2.132039Google Scholar
Muralidhara, BM, Sakthivel, T, Reddy, DL, Karunakaran, G, Venkatravanappa, V, Savadi, S, Divya, VV, Naresh, P, Shivashankara, KS, Venugopalan, R and Honnabyraiah, MK (2024) Genetic diversity and population structure analysis in avocado (Persea americana Mill) accessions of India. Agricultural Research, 19. doi:10.1007/s40003-024-00794-8Google Scholar
Muralidhara, BM, Sakthivel, T, Shivashankara, KS, Karunakaran, G, Honnabyraiah, MK, Savadi, S, Venkatravanappa, V, Venugopalan, R and Reddy D.C, L (2023a) Morpho-biochemical characterization of a unique avocado (Persia americana Mill) accession PA-026 (IC0644455). Journal of Horticultural Sciences 18(2). doi:10.24154/jhs.v18i2.1675Google Scholar
Nair, SS (2018) Quality evaluation of avocado (Persea americana) cultivars and suitability of fruit powder for culinary preparations. M.Sc Thesis, Kerala Agriculture University.Google Scholar
Nkansah, GO, Ofosu-Budu, KG and Ayarna, AW (2013) Genetic diversity among local and introduced avocado germplasm based on Morpho-agronomic traits. International Journal of Plant Breeding and Genetics 7, 7691. doi:10.3923/ijpbg.2013.76.91CrossRefGoogle Scholar
Oliveira, MC, Pio, R, Ramos, JD, Lima, LCO, Pasqual, M and Santos, VA (2013) Phenology and physical and chemical characterization of avocado fruits for oil extraction. Rural Science 43, 411418. doi:10.1590/S0103-84782013000300006CrossRefGoogle Scholar
Ozdemir, F and Topuz, A (2004) Changes in dry matter, oil content and fatty acids composition of avocado during harvesting time and post-harvesting ripening period. Food Chemistry 86, 7983. doi:10.1016/j.foodchem.2003.08.012CrossRefGoogle Scholar
Raman, TSV (1967) Avocado culture in India. In California Avocado Society Yearbook 51, 97106. https://www.avocadosource.com/CAS_Yearbooks/CAS_51_1967/CAS_1967_PG_097-106.pdfGoogle Scholar
Ramos-Aguilar, AL, Ornelas-Paz, J, Tapia-Vargas, LM, Gardea-Bejar, AA, Yahia, EM, Ornelas-Paz, J, Cruz, S, Rios-Velasco, C and Ibarra-Junquera, V (2021) Comparative study on the phytochemical and nutrient composition of ripe fruit of Hass and Hass type avocado cultivars. Journal of Food Composition and Analysis 97, 103796. doi:10.1016/j.jfca.2020.103796CrossRefGoogle Scholar
Rangana, S (1986) Handbook of Analysis and Quality Control for Fruits and Vegetable Products. 112 New Delhi: Tata McGraw-Hill Publishing Co. Ltd. Vol. 99, 112.Google Scholar
Rincon-Hernandez, CA, Sanchez Perez, JD and Espinosa-Garcia, FJ (2011) Caracterizationquimica foliar de losarboles de aguacatecriollo (Perseaamericana var drymifolia) enlosbancos de germoplasma de Michoacan,Mexico. Revista Mexicana de Biodiversidad 82, 395412. doi:10.22201/ib.20078706e.2011.2.474Google Scholar
Rodriguez-Carpena, JG, Morcuende, D, Andrade, MJ, Kylli, P and Estevez, M (2011) Avocado (Persea americana Mill.) phenolics, in vitro antioxidant and antimicrobial activities, and inhibition of lipid and protein oxidation in porcine patties. Journal of Agricultural and Food Chemistry 59(10), 56255635. doi:10.1021/jf1048832CrossRefGoogle ScholarPubMed
Rohwer, JG (1993) Lauraceae. In Kubitzki, K, Rohwer, JG and Bittrich, V (eds), The Families and Genera of Vascular Plants. Vol. II. Berlin: Flowering Plants, Dicotyledons. Springer Verlag, 366391.Google Scholar
Rubinstein, M, Eshed, R, Rozen, A, Zviran, T, Kuhn, DN, Irihimovitch, V, Sherman, A and Ophir, R (2019) Genetic diversity of avocado (Persea americana Mill) germplasm using pooled sequencing. BioMed Central Genomics 20(1), 379. doi:10.1186/s12864-019-5672-7Google ScholarPubMed
Ruiz-Chutan, JA, Kalousova, M, Manourova, A, Degu, HD, Berduo-Sandoval, JE, Villanueva-Gonzalez, CE and Lojka, B (2023) Core collection formation in Guatemalan wild avocado germplasm with phenotypic and SSR data. Agronomy 13(9), 2385. doi:10.3390/agronomy13092385CrossRefGoogle Scholar
Salazar-Lopez, NJ, Dominguez-Avila, JA, Yahia, EM, Belmonte-Herrera, BH, Wall-Medrano, A, Montalvo-Gonzalez, E and Gonzalez-Aguilar, GA (2020) Avocado fruit and by-products as potential sources of bioactive compounds. Food Research International 138, 109774. doi:10.1016/j.foodres.2020.109774CrossRefGoogle ScholarPubMed
Salgotra, RK and Chauhan, BS (2023) Genetic diversity, conservation, and utilization of plant genetic resources. Genes 14(1), 174. doi:10.3390/genes14010174CrossRefGoogle ScholarPubMed
Sarr, M, Goeschl, T and Swanson, T (2008) The value of conserving genetic resources for R&D: A survey. Ecological Economics 67, 184193. doi:10.1016/j.ecolecon.2008.03.004CrossRefGoogle Scholar
Schnell, RJ, Brown, JS, Olano, CT, Power, EJ, Krol, CA, Kuhn, DN and Motamayor, JC (2003) Evaluation of avocado germplasm using microsatellite markers. Journal of the American Society for Horticultural Science 128(6), 881889. doi:10.21273/JASHS.128.6.0881CrossRefGoogle Scholar
Singleton, VL and Rossi, JA (1965) Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture 16(3), 144158. doi:10.5344/ajev.1965.16.3.144CrossRefGoogle Scholar
Tripathi, PC, Karunakaran, G, Sakthivel, T, Sankar, V, Senthil Kumar, R, Muralidhara, BM, Rajendiran, S, Venkataravanappa, V, Madhu, GS and Nesara, B (2022) Avocado cultivation in India.Technical Bulletin No. TB-18/2022. https://www.researchgate.net/publication/303797732Google Scholar
USDA (2011) Avocado, Almond, Pistachio and Walnut Composition. Nutrient Data Laboratory. USDA National Nutrient Database for Standard Reference, Release 24. Washington, DC: U.S. Department of Agriculture.Google Scholar
Vinha, AF, Moreira, J and Sergio, VPB (2013) Physicochemical parameters, phytochemical composition and antioxidant activity of the Algarvian avocado (Persea americana Mill). Journal of Agricultural Science 5(12), 100109. doi:10.5539/jas.v5n12p100CrossRefGoogle Scholar
Wang, M, Zheng, Y, Khuong, T and Lovatt, CJ (2012) Effect of harvest date on the nutritional quality and antioxidant capacity in ‘Hass’ avocado during storage. Food Chemistry 135(2), 694698. doi:10.1016/j.foodchem.2012.05.022CrossRefGoogle ScholarPubMed
Wang, W, Bostic, TR and Gu, L (2010) Antioxidant capacities, procyanidins and pigments in avocados of different strains and cultivars. Food Chemistry 122(4), 11931198. doi:10.1016/j.foodchem.2010.03.114CrossRefGoogle Scholar
Ward, JH (1963) Hierarchical grouping to optimize an objective function. Journal of the American Statistical Association 58, 236244.10.1080/01621459.1963.10500845CrossRefGoogle Scholar
Yunus, I, Handayani, R, Hafifah, H and Rahmiyati, R (2019) Morphological diversity of avocados (Persea americana Mill) in Central Aceh, Indonesia. International Journal of Recent Technology and Engineering 7, 14011405.Google Scholar
Zhao, Y, Sun, J, Liu, Y, Zhang, X, Cao, Y, Zheng, B, Zhang, RX, Zhao, C, Ai, X, He, H and Han, Y (2024) Metabolic basis for superior antioxidant capacity of red-fleshed peaches. Food Chemistry 23, 101698.Google ScholarPubMed
Supplementary material: File

B. M. et al. supplementary material

B. M. et al. supplementary material
Download B. M. et al. supplementary material(File)
File 67.7 KB