Hostname: page-component-5b777bbd6c-7mr9c Total loading time: 0 Render date: 2025-06-19T11:12:03.681Z Has data issue: false hasContentIssue false

The abelianization of the elementary group of rank two

Published online by Cambridge University Press:  20 January 2025

Behrooz Mirzaii
Affiliation:
Instituto de Ciências Matemáticas e de Computação (ICMC), Universidade de São Paulo, São Carlos, Brazil
Elvis Torres Pérez*
Affiliation:
Factultad de Ciencias, Universidad Nacional de Ingeniería (UNI), Lima, Perú
*
Corresponding author: Elvis Torres Pérez, email: elvis.torres.p@uni.pe

Abstract

For an arbitrary ring A, we study the abelianization of the elementary group $\mathit{{\rm E}}_2(A)$. In particular, we show that for a commutative ring A there exists an exact sequence

\begin{equation*}{\rm K}_2(2,A)/{\rm C}(2,A) \rightarrow A/M \rightarrow \mathit{{\rm E}}_2(A)^{\rm ab} \rightarrow 1,\end{equation*}

where ${\rm C}(2,A)$ is the central subgroup of the Steinberg group $\mathit{{\rm St}}(2,A)$ generated by the Steinberg symbols and M is the additive subgroup of A generated by $x(a^2-1)$ and $3(b+1)(c+1)$, with $x\in A, a,b,c \in {A^\times}$.

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on Behalf of The Edinburgh Mathematical Society.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Adem, A. and Naffah, N., On the cohomology of $\mathit{{{\rm} SL}}_2(\mathbb{Z}[1/p])$. London Math. Soc. Lecture Note Ser. Vol. 252, (Cambridge University Press, Cambridge, 1998).10.1017/CBO9780511666131.002CrossRefGoogle Scholar
Alperin, R., and Wright, D., ${\rm K}_2(2, k[T, T^{-1}])$ is generated by “symbols”, Journal of Algebra 59(1): (1979), 3946.10.1016/0021-8693(79)90150-9CrossRefGoogle Scholar
Anh Tuan, B. and Ellis, G., The homology of $\mathit{{{\rm} SL}}_2(\mathbb{Z}[1/m])$ for small m, Journal of Algebra 408 (2014), 102108.Google Scholar
Brown, K. S., Cohomology of groups. Graduate Texts in Mathematics, Vol. 87 (Springer-Verlag, New York, 1994).Google Scholar
Cohn, P. M., On the structure of the $\mathit{{{\rm} GL}}_2$ of a ring, Inst. Hautes ÉTudes Sci. Publ. Math. 30 (1966), 553.10.1007/BF02684355CrossRefGoogle Scholar
Cohn, P. M., A presentation of $\mathit{{{\rm} SL}}_2$ for Euclidean imaginary quadratic number fields, Mathematika 15(2): (1968), 156163.10.1112/S0025579300002515CrossRefGoogle Scholar
Dennis, R. K., The ${{\rm} GE}_2$ property for discrete subrings of ${\mathbb{C}}$, Proc. American Math. Soc. 50(1): (1975), 7782.Google Scholar
Dennis, R. K., and Stein, M. R., The functor K2: a survey of computations and problems, Lecture Notes in Math. 342 (1973), 243280.Google Scholar
Eggleton, R. B., Lacampagne, C. B. and Selfridge, J. L., Euclidean quadratic fields, The American Mathematical Monthly 99(9): (1992), 829837.10.1080/00029890.1992.11995937CrossRefGoogle Scholar
Hutchinson, K., GE2-rings and a graph of unimodular rows, J. Pure Appl. Algebra 226(10): (2022), .10.1016/j.jpaa.2022.107074CrossRefGoogle Scholar
Menal, P., Remarks on the $\mathit{{{\rm} GL}}_2$ of a ring, Journal of Algebra 61(2): (1979), 335359.10.1016/0021-8693(79)90285-0CrossRefGoogle Scholar
Morita, J., Chevalley groups over Dedekind domains and some problems for ${{\rm} K}_2(2,\mathbb{Z}_S)$, Toyama Math. J. 41 (2020), 83122.Google Scholar
Nyberg-Brodda, C. -F., The abelianization of $\mathit{{\rm SL}}_2(\mathbb{Z}[\frac{1}{m}])$, Journal of Algebra, 660 (2024), .Google Scholar
Silvester, J. R., On the K2 of a free associative algebra, Proc. London Math. Soc. 26(3): (1973), 3556.10.1112/plms/s3-26.1.35CrossRefGoogle Scholar
Stein, M. R. G., Generators, relations and coverings of Chevalley groups over commutative rings, Amer. J. Math. 93(4): (1971), 9651004.10.2307/2373742CrossRefGoogle Scholar
Vaserstein, L. N., On the group $\mathit{{{\rm} SL}}_2$ over Dedekind rings of arithmetic type, Math. USSR Sbornik 18(2): (1972), 321332.10.1070/SM1972v018n02ABEH001775CrossRefGoogle Scholar
Williams, F. and Wisner, R., Cohomology of certain congruence subgroups of the modular group, Proc. Amer. Math. Soc. 126(5): (1998), 13311336.10.1090/S0002-9939-98-04367-6CrossRefGoogle Scholar