Hostname: page-component-54dcc4c588-64p75 Total loading time: 0 Render date: 2025-10-07T15:41:10.129Z Has data issue: false hasContentIssue false

Characterization of some convex curves on the 3-sphere

Published online by Cambridge University Press:  06 October 2025

Emília Alves*
Affiliation:
Instituto de Matemática e Estatística, Universidade Federal Fluminense, 24210-201 Niterói, RJ, Brazil

Abstract

In this paper, we provide a characterization for a class of convex curves on the 3-sphere. More precisely, using a theorem that represents a locally convex curve on the 3-sphere as a pair of curves in $\mathbb S^2$, one of which is locally convexand the other is an immersion, we are able of completely characterizing a class of convex curves on the 3-sphere.

Information

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of The Edinburgh Mathematical Society.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Alves, E., Topology of the spaces of locally convex curves on the 3-sphere, Rio de Janeiro. Doctoral Thesis Pontifícia Universidade Católica do Rio de Janeiro, 2016.Google Scholar
Alves, E. and Saldanha, N., Results on the homotopy type of the spaces of locally convex curves on $\mathbb{S}^3$, Annales de l’Institut Fourier 69(3): (2019), 11471185.10.5802/aif.3267CrossRefGoogle Scholar
Anisov, S., Convex curves in $\mathbb{P}^n$, Proc. Steklov Inst. Mathd 221(2): (1998), 339.Google Scholar
Arnol’d, V.I, The geometry of spherical curves and the algebra of quaternions, Russ. Math Surv. 50(1): (1995), 168.10.1070/RM1995v050n01ABEH001662CrossRefGoogle Scholar
Ayala, J., Length minimising bounded curvature paths in homotopy classes, Topology and its Applications 193 (2015), 140151.10.1016/j.topol.2015.06.008CrossRefGoogle Scholar
Ayala, J., On the topology of the spaces of curvature constrained plane curves. (arXiv:1404.4378) 2015.Google Scholar
Ayala, J., Kirszenblat, D. and Rubinstein, H., A geometric approach to shortest bounded curvature paths. (arXiv:1403.4899) 2015.Google Scholar
Ayala, J. and Rubinstein, H., The classification of homotopy classes of bounded curvature paths, Israel Journal of Mathematics 213 (2016), 79107.10.1007/s11856-016-1321-xCrossRefGoogle Scholar
Ayala, J. and Rubinstein, H., Non-uniqueness of the homotopy class of bounded curvature paths. (arXiv:1403.4911) 2017.Google Scholar
Burghelea, D., Saldanha, N. and Tomei, C., Results on infinite dimensional topology and applications to the structure of the critical sets of nonlinear Sturm-Liouville operators, J. Differ. Equations 188 (2003), 569590.10.1016/S0022-0396(02)00095-5CrossRefGoogle Scholar
Burghelea, D., Saldanha, N. and Tomei, C., The topology of the monodromy map of a second order ODE, J. Differential Equations 227 (2006), 581597.10.1016/j.jde.2005.11.009CrossRefGoogle Scholar
Burghelea, D., Saldanha, N. and Tomei, C., The geometry of the critical set of nonlinear periodic Sturm-Liouville operators, J. Differential Equations 246 (2009), 33803397.10.1016/j.jde.2008.10.021CrossRefGoogle Scholar
Dubins, L. E., On curves of minimal length with a constraint on average curvature, and with prescribed initial and terminal positions and tangents, Am. J. Math. 79(3): (1957), 497516.10.2307/2372560CrossRefGoogle Scholar
Dubins, L. E., On plane curves with curvature, Pacific J. Math 11(2): (1961), 471481 Vol.10.2140/pjm.1961.11.471CrossRefGoogle Scholar
Fenchel, W., uber Krummung und Windung geschlossener Raumkurven, Math. Ann. 101 (1929), 238252.10.1007/BF01454836CrossRefGoogle Scholar
Goulart, V. and Saldanha, N., Locally convex curves and the Bruhat stratification of the spin group, Israel Journal of Mathematics 242 (2021), 565604.10.1007/s11856-021-2127-zCrossRefGoogle Scholar
Goulart, V. and Saldanha, N., Stratification by itineraries of spaces of locally convex curves, Bulletin of the Brazilian Mathematical Society 54 (2023), 47.10.1007/s00574-023-00362-8CrossRefGoogle Scholar
Hirsch, M. W., Immersions of manifolds, Trans. AMS 93 (1959), 242276.10.1090/S0002-9947-1959-0119214-4CrossRefGoogle Scholar
Khesin, B. A. and Shapiro, B. Z., Nondegenerate curves on S2 and orbit classification of the Zamolodchikov algebra, Commun. Math. Phys 145(2): (1992), 357362.10.1007/BF02099142CrossRefGoogle Scholar
Khesin, B. A. and Shapiro, B. Z., Homotopy classification of nondegenerate quasiperiodic curves on the 2-sphere, Publ. Inst. Math. 80(66): (1999), 127156.Google Scholar
Little, J. A., Nondegenerate homotopies of curves on the unit 2-sphere, J. Differential Geometry 4(3): (1970), 339348.10.4310/jdg/1214429507CrossRefGoogle Scholar
Mostovoy, J. and Sadykov, R., The space of non-degenerate closed curves in a Riemannian manifold. (arXiv:1209.4109), 2012.Google Scholar
Reeds, J. A. and Shepp, L. A., Optimal paths for a car that goes both forwards and backwards, Pacific J. Math. 145(2): (1990), 367393.10.2140/pjm.1990.145.367CrossRefGoogle Scholar
Saldanha, N. C., The homotopy and cohomology of spaces of locally convex curves in the sphere – I. (arXiv:0905.2111v1), 2009.Google Scholar
Saldanha, N. C., The homotopy and cohomology of spaces of locally convex curves in the sphere – II. (arXiv:0905.2116v1), 2009.Google Scholar
Saldanha, N. C., The homotopy type of spaces of locally convex curves in the sphere, Geom. Topol. 19 (2015), 11551203.10.2140/gt.2015.19.1155CrossRefGoogle Scholar
Saldanha, N. C. and Shapiro, B. Z., Spaces of locally convex curves in $\mathbb{S}^n$ and combinatorics of the group B $^{+}_{n+1}$, Journal of Singularities 4 (2012), 122.Google Scholar
Saldanha, N. C. and Tomei, C., The topology of critical sets of some ordinary differential operators, Progress in Nonlinear Differential Equations and Their Applications 66 (2005), 491504.10.1007/3-7643-7401-2_33CrossRefGoogle Scholar
Saldanha, N. C. and Zühlke, P., On the components of spaces of curves on the 2-sphere with geodesic curvature in a prescribed interval, Int. J. Math 24(14): (2013), 178.10.1142/S0129167X13501012CrossRefGoogle Scholar
Saldanha, N. C. and Zühlke, P., Components of spaces of curves with constrained curvature on flat surfaces, Pacific J. Math. 281(1): (2016), 185242.10.2140/pjm.2016.281.185CrossRefGoogle Scholar
Saldanha, N. C. and Zühlke, P., Homotopy type of spaces of curves with constrained curvature on flat surfaces. (arXiv:1410.8590), 2022.Google Scholar
Shapiro, B. Z. and Shapiro, M. Z., On the number of connected components in the space of closed nondegenerate curves on $\mathbb{S}^n$ 25(1): (1991), 7579.10.1090/S0273-0979-1991-16028-3CrossRefGoogle Scholar
Shapiro, M. Z., Topology of the space of nondegenerate curves, Math. USSR 57 (1993), 106126.Google Scholar
Smale, S., Regular curves on Riemannian manifolds, Trans. of the AMS 87(2): (1958), .10.1090/S0002-9947-1958-0094807-0CrossRefGoogle Scholar
Smale, S., The classification of immersions of spheres in Euclidean spaces, Ann. of Math. 69(2): (1959), 327344.10.2307/1970186CrossRefGoogle Scholar
Smale, S., A classification of immersions of the two-sphere, Trans. of the AMS 90 (1959), 281290.10.1090/S0002-9947-1959-0104227-9CrossRefGoogle Scholar
Whitney, H., On regular closed curves in the plane, Compositio Mathematica 4(1): (1937), 276284.Google Scholar
Zühlke, P., Homotopies of curves on the 2-sphere with geodesic curvature in a prescribed interval, Rio de Janeiro. Doctoral Thesis Pontifícia Universidade Católica do Rio de Janeiro, 2015.Google Scholar
Zhou, C., The geometry of C 1regular curves in sphere with constrained curvature, J. Geom. Anal. 32(24): (2022).Google Scholar