Hostname: page-component-7dd5485656-2pp2p Total loading time: 0 Render date: 2025-10-23T20:13:44.335Z Has data issue: false hasContentIssue false

Higher power sums of Fourier coefficients of symmetric square L-functions

Published online by Cambridge University Press:  21 October 2025

Jinzhi Feng*
Affiliation:
School of Mathematics, Shandong University, Jinan, Shandong, China

Abstract

Let f(z) be the normalized primitive holomorphic Hecke eigenforms of even integral weight k for the full modular group $SL(2,\mathbb{Z})$ and denote $L(s,\mathrm{sym}^{2}f)$ be the symmetric square L-function attached to f(z). Suppose that $\lambda_{\mathrm{sym}^{2}f}(n)$ be the $\mathrm{Fourier}$ coefficient of $L(s,\mathrm{sym}^{2}f)$. In this paper, we investigate the sum $\sum\limits_{n\leqslant x}\lambda^{j}_{\mathrm{sym}^{2}f }(n) $ for $j\geqslant 3$ and obtain some new results which improve on previous error estimates. We also consider the sum $\sum\limits_{n\leqslant x}\lambda^{j}_{f }(n^{2})$ and get some similar results.

Information

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of The Edinburgh Mathematical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Chung, K. L. and AitSahlia, F., Elementary probability theory. In With Stochastic Processes and an Introduction to Mathematical Finance, fourth ed., Springer-Verlag, New York, 2003 MR 1961879.Google Scholar
Deligne, P., La conjecture de Weil. I, Inst. Hautes ÉTudes Sci. Publ. Math. 43(1): (1974), 273307. MR 340258.10.1007/BF02684373CrossRefGoogle Scholar
Fomenko, O. M., Identities involving the coefficients of automorphic L-functions, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 314(290): (2004), 247256. MR 2119744.Google Scholar
Fomenko, O. M., Mean value theorems for automorphic L-functions, Algebra i Analiz 19(5): (2007), 246264. MR 2381948.Google Scholar
Graham, S. W. and Kolesnik, G., Van Der Corput’s Method of Exponential Sums, Vol. 126, Cambridge University Press, Cambridge, 1991.10.1017/CBO9780511661976CrossRefGoogle Scholar
Heath-Brown, D. R., A new kth derivative estimate for a trigonometric sum via Vinogradov’s integral, Tr. Mat. Inst. Steklova 296(1): (2017), 95110. MR 3640775 English version published in Proc. Steklov Inst. Math. 296 (2017), 1, 88–103.Google Scholar
Huang, J., Higher moments of automorphic L-functions of GL(r) and its applications, Acta Math. Hungar. 169(2): (2023), 489502. MR 4594312.10.1007/s10474-023-01324-8CrossRefGoogle Scholar
Ichihara, Y., Estimates of a certain sum involving coefficients of cusp forms in weight and level aspects, Lith. Math. J. 48(2): (2008), 188202. MR 2425111.10.1007/s10986-008-9003-yCrossRefGoogle Scholar
Ivić, A. and Zhai, W., On a hybrid fourth moment involving the Riemann zeta-function, Topics. In Mathematical Analysis and applications, Springer Optim. Appl., Vol. 94, 461482 Springer, Cham, Switzerland, 2014.Google Scholar
Iwaniec, H. and Kowalski, E., Analytic Number Ttheory, American Mathematical Society Colloquium Publications, Vol. 53, American Mathematical Society, Providence, RI, 2004.Google Scholar
Jiang, Y. and , G., Uniform estimates for sums of coefficients of symmetric square L-function, J. Number Theory 148(3): (2015), 220234. MR 3283177.10.1016/j.jnt.2014.09.008CrossRefGoogle Scholar
, G., Uniform estimates for sums of Fourier coefficients of cusp forms, Acta Math. Hungar. 124(1-2): (2009), 8397. MR 2520619.10.1007/s10474-009-8153-7CrossRefGoogle Scholar
, G. and Tang, H., Sums of Fourier coefficients related to Hecke eigencusp forms, Ramanujan J. 37(2): (2015), 309327. MR 3341693.10.1007/s11139-014-9581-8CrossRefGoogle Scholar
Lao, H., On the fourth moment of coefficients of symmetric square L-function, Chinese Ann. Math. Ser. B 33(6): (2012), 877888. MR 2996556.10.1007/s11401-012-0746-8CrossRefGoogle Scholar
Lao, H., McKee, M. and Yangbo, Y., Asymptotics for cuspidal representations by functoriality from GL(2), J. Number Theory 164(7): (2016), 323342. MR 3474392.10.1016/j.jnt.2016.01.008CrossRefGoogle Scholar
Lao, H. and Sankaranarayanan, A., The average behavior of fourier coefficients of cusp forms over sparse sequences, Proc. Amer. Math. Soc. 137(8): (2009), 25572565. MR 2497466.10.1090/S0002-9939-09-09855-4CrossRefGoogle Scholar
Lao, H. and Sankaranarayanan, A., The distribution of Fourier coefficients of cusp forms over sparse sequences, Acta Arith. 163(2): (2014), 101110. MR 3200164.10.4064/aa163-2-1CrossRefGoogle Scholar
Lau, Y. -K., , G. -S. and Wu, J., Integral power sums of Hecke eigenvalues, Acta Arith. 150(2): (2011), 193207. MR 2836386.10.4064/aa150-2-7CrossRefGoogle Scholar
Lin, Y., Nunes, R. and Zhi, Q., Strong subconvexity for self-dual GL(3) L-functions, Int. Math. Res. Not. IMRN 2023(13): (2023), 1145311470.10.1093/imrn/rnac153CrossRefGoogle Scholar
Liu, H., The average behavior of Fourier coefficients of symmetric power L-functions, Bull. Malays. Math. Sci. Soc. 46(6): (2023), 193, 15MR, 4646403.10.1007/s40840-023-01586-zCrossRefGoogle Scholar
Luo, S., Lao, H. and Zou, A., Asymptotics for the Dirichlet coefficients of symmetric power L-functions, Acta Arith. 199(3): (2021), 253268. MR 4296723.Google Scholar
Newton, J. and Thorne, J. A., Symmetric power functoriality for holomorphic modular forms, Publ. Math. Inst. Hautes ÉTudes Sci. 134(1): (2021), 1116. MR 4349240.10.1007/s10240-021-00127-3CrossRefGoogle Scholar
Perelli, A., General L-functions, Ann. Mat. Pura Appl. 130(1): (1982), 287306.10.1007/BF01761499CrossRefGoogle Scholar
Sankaranarayanan, A., On a sum involving Fourier coefficients of cusp forms, Liet. Mat. Rink. 46(4): (2006), 565583. MR 2320364.Google Scholar
Tang, H. and Jie, W., Fourier coefficients of symmetric power L-functions, J. Number Theory 167(10): (2016), 147160. MR 3504040.10.1016/j.jnt.2016.03.005CrossRefGoogle Scholar
Tang, H., Estimates for the Fourier coefficients of symmetric square L-functions, Arch. Math. (Basel) 100(2): (2013), 123130. MR 3020126.10.1007/s00013-013-0481-8CrossRefGoogle Scholar
Tang, H., A note on the Fourier coefficients of Hecke-Maass forms, J. Number Theory 133(4): (2013), 11561167. MR 3003991.10.1016/j.jnt.2012.09.009CrossRefGoogle Scholar
Xiaoguang, H., Integral power sums of Fourier coefficients of symmetric square L-functions, Proc. Amer. Math. Soc. 147(7): (2019), 28472856. MR 3973888.Google Scholar