Hostname: page-component-6bb9c88b65-9rk55 Total loading time: 0 Render date: 2025-07-23T22:13:12.386Z Has data issue: false hasContentIssue false

Very high energy γ-radiation from the radio quasar 4C 21.35

Published online by Cambridge University Press:  17 August 2012

Josefa Becerra González
Affiliation:
Inst. de Astrofsica de Canarias, E-38200 La Laguna, Tenerife, Spain Depto. de Astrofsica, Universidad de La Laguna, E-38206 La Laguna, Spain
Laura Maraschi
Affiliation:
INAF National Institute for Astrophysics, I-00136 Rome, Italy
Daniel Mazin
Affiliation:
IFAE, Edifici Cn., Campus UAB, E-08193 Bellaterra, Spain Max-Planck-Institut fr Physik, D-80805 Mnchen, Germany
Elisa Prandini
Affiliation:
Universit di Padova and INFN, I-35131 Padova, Italy
Koji Saito
Affiliation:
Max-Planck-Institut fr Physik, D-80805 Mnchen, Germany
Julian Sitarek
Affiliation:
University of d, PL-90236 Lodz, Poland
Antonio Stamerra
Affiliation:
Universit di Siena, and INFN Pisa, I-53100 Siena, Italy
Fabrizio Tavecchio
Affiliation:
INAF National Institute for Astrophysics, I-00136 Rome, Italy
Tomislav Terzić
Affiliation:
University of Rijeka, HR-51000 Rijeka, Croatia, email: tterzic@phy.uniri.hr
Aldo Treves
Affiliation:
Universit dellnsubria, Como, I-22100 Como, Italy
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A very high energy (VHE) γ-radiation was detected from a flat spectrum radio quasar (FSRQ) 4C 21.35 (PKS1222+21) by MAGIC (Major Atmospheric Gamma Imaging Cherenkov) telescopes on June 17th 2010. 4C 21.35 is only the 3rd FSRQ detected in VHE γ-rays. With its hard spectrum (Γ = 2.72±0.34) with no apparent cut-off at energies below 130 GeV and an extremely fast variation of flux (doubling in 8.6+1.1−0.9 minutes), this detection poses a challenge to existing models of VHE γ-radiation from FSRQs. The most important results of observations performed by MAGIC telescopes are presented here, as well as some possible explanations of those results.

References

Aleksić, J., et al. (the MAGIC Collaboration) 2010, ApJL, 726, 58CrossRefGoogle Scholar
Aleksić, J., et al. (the MAGIC Collaboration) 2011a, accepted to Astroparticle Physics, arXiv:1108.1477Google Scholar
Aleksić, J., et al. (the MAGIC Collaboration) 2011b, ApJL, 730, L8.CrossRefGoogle Scholar
Bromberg, O. & Levinson, A. 2009, ApJ, 699, 1274CrossRefGoogle Scholar
Dominguez, A. et al. 2011, MNRAS, 410, 2556CrossRefGoogle Scholar
Ghisellini, G. & Tavecchio, F. 2008, MNRAS, 386, 28CrossRefGoogle Scholar
Ghisellini, G. & Tavecchio, F. 2009, MNRAS, 397, 985CrossRefGoogle Scholar
Giannios, D., Uzdensky, D. A., & Begelman, M. C. 2009, MNRAS, 395, 29CrossRefGoogle Scholar
Liu, H. T. & Bai, J. M. 2006, ApJ, 653, 1089CrossRefGoogle Scholar
Marscher, A. P. & Jorstad, S. G. 2010, in: Savolainen, T., Ros, E., Porcas, R. W., & Zensus, J. A. (eds.), Rapid Variability of Gamma-ray Emission from Sites near the 43 GHz Cores of Blazar Jets, Proc. Fermi meets Jansky: AGN in Radio and Gamma-Rays (Bonn: MPI), p. 171Google Scholar
Moralejo, A., et al. (the MAGIC Collaboration) 2009, Proceedings of 31st ICRC, Łódź, Poland, arXiv:0907.0943Google Scholar
Nalewajko, K. & Sikora, M. 2009, MNRAS, 392, 1205CrossRefGoogle Scholar
Osterbrock, D. E. & Pogge, R. W. 1987, ApJ, 323, 108CrossRefGoogle Scholar
Reimer, A. 2007, ApJ, 665, 1023CrossRefGoogle Scholar
Stawarz, L., Aharonian, F., Kataoka, J., et al. 2006, MNRAS, 370, 981CrossRefGoogle Scholar
Tavecchio, F. & Mazin, D. 2009, MNRAS, 392, L40.CrossRefGoogle Scholar
Tavecchio, F., Becerra-Gonzalez, J., Ghisellini, G., et al. 2011, A&A, 534, A86.Google Scholar