Hostname: page-component-857557d7f7-qr8hc Total loading time: 0 Render date: 2025-11-26T01:53:37.987Z Has data issue: false hasContentIssue false

Uniqueness of solution for logarithm Choquard equation

Published online by Cambridge University Press:  25 November 2025

Xiaohui Yu*
Affiliation:
College of Economics, Shenzhen University, Shenzhen, Guangdong, PR China (xiaohui.yu@szu.edu.cn)
Xiaojun Zhao
Affiliation:
School of Economics, Peking University, Beijing, PR China (zhaoxiaojun@pku.edu.cn)
*
*Corresponding author.

Abstract

In this paper, we prove the uniqueness of positive solutions for the following Choquard equation involving logarithm convolution

\begin{equation*}-\Delta u(x)=e^{[\int_{\mathbb R^N} \ln{\frac {|y|}{|x-y|}}u(y)^{\frac{2N}{N-2}}\,dy]}u(x)^{\frac{N}{N-2}}\quad {\rm in}\ \mathbb{R}^N\end{equation*}

where $N\geq 3$. Under the assumptions that

\begin{equation*}{\int_{\mathbb R^N}} e^{\frac{N+2}2[\int_{\mathbb R^N} \ln{\frac {|y|}{|x-y|}}u(y)^{\frac{2N}{N-2}}\,dy]}\,dx \lt \infty,\ {\int_{\mathbb R^N}} u^{\frac{N+2}{N-2}}\,dx \lt \infty \quad{\rm and }\quad {\int_{\mathbb R^N}} u^{\frac{2N}{N-2}}\,dx \lt \infty,\end{equation*}

we show that any positive solution of the above equation must have the following form

\begin{equation*}u(x)=(\frac{C\varepsilon}{\varepsilon^2+|x-x_0|^2})^{\frac{N-2}2},\end{equation*}

where $C$ is a positive constant, $\varepsilon \gt 0$ and $x_0\in \mathbb R^N$ are two parameters.

Information

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of The Royal Society of Edinburgh

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Caffarelli, L., Gidas, B. and Spruck, J.. Asymptotic symmetry and local behavior of semilinear equations with critical Sobolev growth. Comm. Pure Appl. Math. 42 (1989), 271297.10.1002/cpa.3160420304CrossRefGoogle Scholar
Chen, W., Fang, Y. and Li, C.. Super poly-harmonic property of solutions for Navier boundary problems on a half space. J. Funct. Anal. 265 (2013), 15221555.10.1016/j.jfa.2013.06.010CrossRefGoogle Scholar
Chen, W., Fang, Y. and Yang, R.. Liouville theorems involving the fractional Laplacian on a half space. Adv. Math. 274 (2015), 167198.10.1016/j.aim.2014.12.013CrossRefGoogle Scholar
Chen, W. and Li, C.. Classification of solutions of some nonlinear elliptic equations. Duke Math. J. 63 (1991), 615622.10.1215/S0012-7094-91-06325-8CrossRefGoogle Scholar
Chen, W., Li, C. and Li, Y.. A direct method of moving planes for the fractional Laplacian. Adv. Math. 308 (2017), 404437.10.1016/j.aim.2016.11.038CrossRefGoogle Scholar
Chen, W., Li, C. and Ou, B.. Classification of solutions for a system of integral equations. Comm. Partial Differential Equations. 30 (2005), 5965.10.1081/PDE-200044445CrossRefGoogle Scholar
Chen, W., Li, C. and Ou, B.. Classification of solutions for an integral equation. Comm. Pure Appl. Math. 59 (2006), 330343.10.1002/cpa.20116CrossRefGoogle Scholar
Chen, W., Li, Y. and Zhang, R.. A direct method of moving spheres on fractional order equations. J. Funct. Anal. 272 (2017), 41314157.10.1016/j.jfa.2017.02.022CrossRefGoogle Scholar
Dai, W. and Qin, G.. Classification of nonnegative classical solutions to third-order equations. Adv. Math. 328 (2018), 822857.10.1016/j.aim.2018.02.016CrossRefGoogle Scholar
Du, L. and Yang, M.. Uniqueness and nondegeneracy of solutions for a critical nonlocal equation. Discrete Contin. Dyn. Syst. 39 (2019), 58475866.10.3934/dcds.2019219CrossRefGoogle Scholar
Gidas, B., Ni, W. and Nirenberg, L.. Symmetry and related properties via the maximum principle. Commun. Math. Phy. 68 (1979), 209243.10.1007/BF01221125CrossRefGoogle Scholar
Gilbarg, D. and Trudinger, N.. Elliptic partial differential equations of second order. Grundlehoen der Mathematischen Wissenschaften, Vol. 224, (Springer, Berlin, 1983) second ed.Google Scholar
Li, Y. and Ni, W.. On conformal scalar curvature equations in $\mathbb{R}^n$. Duke Math. J. 57 (1988), 895924.10.1215/S0012-7094-88-05740-7CrossRefGoogle Scholar
Li, Y. and Zhu, M.. Uniqueness theorems through the method of moving spheres. Duke Math. J. 80 (1995), 383417.10.1215/S0012-7094-95-08016-8CrossRefGoogle Scholar
Lieb, E.. Existence and uniqueness of the minimizing solution of Choquards nonlinear equation. Stud. Appl. Math. 57 (1977), 93105.10.1002/sapm197757293CrossRefGoogle Scholar
Lin, C.. A classification of solutions of a conformally invariant fourth order equation in $\mathbb{R}^n$. Comment. Math. Helv. 73 (1998), 206231.10.1007/s000140050052CrossRefGoogle Scholar
Liu, F., Yang, J. and Yu, X.. Positive solutions to multi-critical elliptic problem. Annali di Matematica Pura ed Applicata. 202 (2023), 851875.10.1007/s10231-022-01262-2CrossRefGoogle Scholar
Ma, L. and Zhao, L.. Classification of positive solitary solutions of the nonlinear Choquard equation. Arch. Ration. Mech. Anal. 195 (2010), 455467.10.1007/s00205-008-0208-3CrossRefGoogle Scholar
Moroz, I, Penrose, R. and Tod, P.. Spherically-symmetric solutions of the Schrodinger-Newton equations. Classical Quantum Gravity. 15 (1998), 27332742.10.1088/0264-9381/15/9/019CrossRefGoogle Scholar
Moroz, V. and Van Schaftingen, J.. Groundstates of nonlinear Choquard equations: existence, qualitative properties and decay asymptotics. J. Funct. Anal. 265 (2013), 153184.10.1016/j.jfa.2013.04.007CrossRefGoogle Scholar
Moroz, V. and Van Schaftingen, J.. Semi-classical states for the Choquard equation. Calc. Var. Partial Differential Equations. 52 (2015), 199235.10.1007/s00526-014-0709-xCrossRefGoogle Scholar
Moroz, V. and Van Schaftingen, J.. Existence of groundstates for a class of nonlinear Choquard equations. Trans. Amer. Math. Soc. 367 (2015), 65576579.10.1090/S0002-9947-2014-06289-2CrossRefGoogle Scholar
Pekar, S.. Untersuchung ber die Elektronentheorie der Kristalle. (Akademie Verlag, Berlin, 1954).10.1515/9783112649305CrossRefGoogle Scholar
Serrin, J.. A symmetry problem in potential theory. Arch. Rat. Mech. Anal. 43 (1971), 304318.10.1007/BF00250468CrossRefGoogle Scholar
Trudinger, N.. Remarks concerning the conformal deformation of Riemannian structures on compact manifolds. Ann. Sc. Norm. Sup. Pisa. 22 (1968), 265C274.Google Scholar
Yu, X.. Classification of solutions for some elliptic system. Calc. Var. Partial Differential Equations. 61 (2022), 151, 37.10.1007/s00526-022-02258-9CrossRefGoogle Scholar