Hostname: page-component-5b777bbd6c-w9n4q Total loading time: 0 Render date: 2025-06-18T22:07:26.424Z Has data issue: false hasContentIssue false

The evolution and degradation of Quaternary fossil fluvial fans in Brazilian semi-arid regions

Published online by Cambridge University Press:  22 May 2025

Patricia Mescolotti*
Affiliation:
Faculdade de Engenharias, Arquitetura e Urbanismo e Geografia, Universidade Federal do Mato Grosso do Sul - UFMS, R. ufms, 527, Campo Grande 79070-900, Brazil
Vinicius Marques Montebello
Affiliation:
Instituto de Geociências e Ciências Exatas, Universidade Estadual Paulista - Unesp, Avenida 24A, 1515, Rio Claro, 13506-900, Brazil
*
Corresponding author: Patricia Mescolotti; Email: patricia.mescolotti@ufms.br

Abstract

Alluvial fans associated with eolian fields are common geomorphic features that reflect complex interactions in which the alluvial or eolian system acts as both a sedimentary source and a modifier. The semi-arid region of the São Francisco River is notable in Quaternary studies for its alluvial system and the largest Quaternary inland eolian field in Brazil. Fluvial fans are present on the western margin of the river and to the south of the eolian field. To characterize these fans, we used remote sensing, fieldwork, sedimentology, and OSL dating. We identified three fluvial fans: two asymmetric (> 185 km2) and one circular (8.5 km2). The eolian deposits played a critical role in both sediment supply and formation of the fluvial fans. Fan spreading occurred due to the difference in gradient between the eolian field and the river terraces. Fan deposits were dated to 4.5 ± 0.6 ka, and overlap with other systems, which suggests the system was active before 4 ka. Currently, these fans are degrading and being reworked by wind, and the drainages that exist across them are ephemeral. The Xique-Xique fluvial fans are now fossil systems, preserving evidence of past increased rainfall and base level lowering in the Late Holocene.

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Quaternary Research Center.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Ab’Sáber, A., 2006. O paleodeserto de Xique-Xique. Estudos Avançados 20, 301308.CrossRefGoogle Scholar
Al-Masrahy, M.A., Mountney, N P., 2015. A classification scheme for fluvial–aeolian system interaction in desert-margin settings. Aeolian Research 17, 6788.CrossRefGoogle Scholar
Almeida, F.F.M., 1977. O Cráton do São Francisco. Revista Brasileira de Geociências 7, 349364.Google Scholar
Assine, M.L., 2008. Ambientes de Leques Aluviais. In: Silva, A.J.C.L.P., Aragão, M.A.N.F., Magalhães, A.J.C. Ambientes de Sedimentação Siliciclástica do Brasil, 1st ed. Beca, São Paulo, pp. 5271.Google Scholar
Assine, M.L., Merino, E.R., Pupim, F.N., Macedo, H.D.A., Santos, M.G.M.D., 2015. The Quaternary alluvial systems tract of the Pantanal Basin, Brazil. Brazilian Journal of Geology 45, 475489.10.1590/2317-4889201520150014CrossRefGoogle Scholar
Barreto, A.M.F., 1996. Interpretação paleoambiental do sistema de dunas fixadas do médio rio São Francisco, Bahia. Tese de Doutorado, Universidade de São Paulo, São Paulo, Brazil.Google Scholar
Barreto, A.M.F., Suguio, K., Oliveira, P.E. de, Tatumi, S.H., 2002. Campo de dunas inativas do médio Rio São Francisco, BA: marcante registro de ambiente desértico do quaternário brasileiro. Sitios Geológicos e Paleontológicos do Brasil. DNPM, Brasília.Google Scholar
Bartorelli, A., Assine, M.L., Pires Neto, A., Ab’Sáber, A., 2010. Dunas do Jalapão: uma paisagem insólita no interior do Brasil. A Obra de Aziz Nacib Ab’Sáber. Beca-BALL Edições, São Paulo, pp. 570582.Google Scholar
Beck, H.E., Zimmermann, N.E., McVicar, T.R., Vergopolan, N., Berg, A., Wood, E.F., 2018. Present and future Köppen-Geiger climate classification maps at 1-km resolution. Scientific Data 5, 180214. https://doi.org/10.1038/sdata.2018.214.CrossRefGoogle ScholarPubMed
Bull, W.B., 1991. Geomorphic Responses to Climatic Change. Oxford University Press, Oxford, UK.Google Scholar
de Andrade e Santos, H., dos Santos, P.P., Kenji, D.O.L., 2012. Changes in the flood regime of São Francisco River (Brazil) from 1940 to 2006. Regional Environmental Change 12, 123132.CrossRefGoogle Scholar
Galbraith, R.F., Roberts, R.G., Laslett, G.M., Yoshida, H., Olley, J.M., 1999. Optical dating of single and multiple grains of quartz from Jinmium rock shelter, northern Australia: part I, experimental design and statistical models. Archaeometry 41, 339364.CrossRefGoogle Scholar
Giannini, P.C.F., Assine, M.L., Barbosa, L.M., Barreto, A.M.F., Carvalho, A.M., Claudino-Sales, V., Maia, L.P., Martinho, C.T., Peulvast, J.P., Sawakuchi, A.O., 2005. Dunas e paleodunas eólicas costeiras e interiores. In: Souza, C.R.G., Suguio, K., Oliveira, A.M.S., Oliveira, P.E. (Eds.) Quaternário do Brasil. Holos, Ribeirão Preto, pp. 235257.Google Scholar
Guérin, G., Mercier, N., Adamiec, G., 2011. Dose-rate conversion factors: update. Ancient TL 29, 58. https://doi.org/10.26034/la.atl.2011.443.CrossRefGoogle Scholar
Hendrick, K., Owen, L., Rockwell, T., Meigs, A., Costa, C., Caffee, M. W., Masana, E., Ahumada, E., 2013. Timing and nature of alluvial fan and strath terrace formation in the Eastern Precordillera of Argentina. Quaternary Science Reviews 80, 143168.CrossRefGoogle Scholar
Knoppers, B., Medeiros, P.R.P., de Souza, W.F.L., Jennerjahn, T., 2006. The Sao Francisco Estuary, Brazil. In: Wangersky, P.J. (Ed.), Estuaries. Springer Science & Business Media, Berlin, pp. 5170.Google Scholar
Latrubesse, E.M., 2008. Patterns of anabranching channels: the ultimate end-member adjustment of mega rivers. Geomorphology 101, 130145.10.1016/j.geomorph.2008.05.035CrossRefGoogle Scholar
Latrubesse, E.M., Stevaux, J.C., Santos, M.L., Assine, M.L., 2005a. Grandes sistemas fluviais: geologia, geomorfologia e paleohidrologia. In: Souza, C.R.G., Suguio, K., Oliveira, A.M.S., Oliveira, P.E. (Eds.) Quaternário do Brasil. Holos, Ribeirão Preto, pp. 276297.Google Scholar
Latrubesse, E.M., Stevaux, J.C., Sinha, R., 2005b. Tropical rivers. Geomorphology 70, 187206.CrossRefGoogle Scholar
Liang, P., Forman, S.L., 2019. LDAC: an Excel-based program for luminescence equivalent dose and burial age calculations. Ancient TL 37/2, 2140.10.26034/la.atl.2019.536CrossRefGoogle Scholar
Mather, A.E., Hartley, A., 2005. Flow events on a hyper-arid alluvial fan: Quebrada Tambores, Salar de Atacama, northern Chile. In: Harvey, A.M., Mather, A.E., Stokes, M. (Eds.), Alluvial Fans: Geomorphology, Sedimentology, Dynamics. Geological Society, London, Special Publications 251, 924.Google Scholar
May, J.-H., 2013. Dunes and dunefields in the Bolivian Chaco as potential environmental records. Aeolian Research 10, 89102.10.1016/j.aeolia.2013.04.002CrossRefGoogle Scholar
McCarthy, T., 2013. The Okavango Delta and its place in the geomorphological evolution of Southern Africa. South African Journal of Geology 116, 154.CrossRefGoogle Scholar
McCarthy, T.S., Barry, M., Bloem, A., Ellery, W.N., Heister, H., Merry, C.L., Röther, H., Sternberg, H., 1997. The gradient of the Okavango fan, and its sedimentological and tectonic implications. Journal of African Earth Sciences 24, 6578.10.1016/S0899-5362(97)00027-4CrossRefGoogle Scholar
McGlue, M.M., Silva, A., Corradini, F.A., Zani, H., Trees, M.A., Ellis, G.S., Parolin, M., Swarzenski, P.W., Cohen, A.S., Assine, M.L., 2011. Limnogeology in Brazil’s ‘‘forgotten wilderness’’: a synthesis from the large floodplain lakes of the Pantanal. Journal of Paleolimnology 46, 273289.CrossRefGoogle Scholar
Merino, E.R., Assine, M.L., 2020. Hidden in plain sight: how finding a lake in the Brazilian Pantanal improves understanding of wetland hydrogeomorphology. Earth Surface Processes and Landforms 45, 440458.10.1002/esp.4745CrossRefGoogle Scholar
Merino, E.R., Pupim, F.N., de Azevedo Macedo, H., Assine, M.L., 2015. Realce e integração de imagens orbitais óticas com dados SRTM para mapeamento e estudo de grandes planícies fluviais: exemplos de aplicação no Pantanal. Revista Brasileira de Geomorfologia 16, 4962.10.20502/rbg.v16i1.626CrossRefGoogle Scholar
Mescolotti, P.C., Pupim, F.N., Ladeira, F.S.B., Sawakuchi, A.O., Catharina, A.S., Assine, M.L., 2021. Fluvial aggradation and incision in the Brazilian tropical semiarid: climate-controlled landscape evolution of the São Francisco River. Quaternary Science Reviews 263, 106977. https://doi.org/10.1016/j.quascirev.2021.106977.CrossRefGoogle Scholar
Mescolotti, P.C., Giannini, P.C.F., Pupim, F.N., Sawakuchi, A.O., Ladeira, F.S.B., Assine, M.L., 2023. The largest Quaternary inland eolian system in Brazil: eolian landforms and activation/stabilization phases of the Xique-Xique dune field. Geomorphology 420, 108516. https://doi.org/10.1016/j.geomorph.2022.108516.CrossRefGoogle Scholar
Miall, A.D., 1990. Principles of Sedimentary Basin Analysis. Springer, New York.CrossRefGoogle Scholar
Moraes, L.C. de, Amaral, J. da S., 2001. Diamante de Santo Inácio, Estado da Bahia. CPRM, Salvador. https://rigeo.sgb.gov.br/handle/doc/1550.Google Scholar
Murray, A.S., Wintle, A.G., 2003. The single aliquot regenerative dose protocol: potential for improvements in reliability. Radiation Measurements 37, 377381.CrossRefGoogle Scholar
Oliveira, P.E., Barreto, A.M.F., Suguio, K., 1999. Late Pleistocene/Holocene climatic and vegetational history of the Brazilian Caatinga: the fossil dunes of the middle São Francisco River. Palaeogeography, Palaeoclimatology, Palaeoecology 152, 319337.10.1016/S0031-0182(99)00061-9CrossRefGoogle Scholar
Pastier, A.-M., Dauteuil, O., Murray-Hudson, M., Moreau, F., Walpersdorf, A., Makati, K., 2017. Is the Okavango Delta the terminus of the East African Rift System? Towards a new geodynamic model: geodetic study and geophysical review. Tectonophysics 712–713, 469481.10.1016/j.tecto.2017.05.035CrossRefGoogle Scholar
Pereira, S.B., Pruski, F.F., da Silva, D.D., Ramos, M.M., 2007. Estudo do comportamento hidrológico do Rio São Francisco e seus principais afluentes. Revista Brasileira de Engenharia Agrícola e Ambiental 11, 615622.CrossRefGoogle Scholar
Pinaya, J.L.D., Cruz, F.W., Ceccantini, G.C.T., Corrêa, P.L.P., Pitman, N., Vemado, F., Maria del Carmen, S.L., et al., 2019. Brazilian montane rainforest expansion induced by Heinrich Stadial 1 event. Science Reports 9, 114. https://doi.org/10.1038/s41598-019-53036-1.Google ScholarPubMed
Pupim, F.N., Assine, M.L., Sawakuchi, A.O., 2017. Late Quaternary Cuiabá megafan, Brazilian Pantanal: channel patterns and paleoenvironmental changes. Quaternary International 438, 108125.10.1016/j.quaint.2017.01.013CrossRefGoogle Scholar
Recoder, R.S., Rodrigues, M.T., 2020. Diversification processes in lizards and snakes from the Middle São Francisco River dune region, Brazil. In: Rull, V., Carnaval, A.C. (Eds.) Neotropical Diversification: Patterns and Processes. Springer, Cham, pp. 713740.10.1007/978-3-030-31167-4_26CrossRefGoogle Scholar
Rhodes, E.J., 2011. Optically stimulated luminescence dating of sediments over the past 200,000 years. Annual Review of Earth and Planetary Sciences 39, 461488.10.1146/annurev-earth-040610-133425CrossRefGoogle Scholar
Rodrigues, M.T., 1996. Lizards, snakes, and amphisbaenians from the quaternary sand dunes of the middle Rio São Francisco, Bahia, Brazil. Journal of Herpetology 30, 513523.10.2307/1565694CrossRefGoogle Scholar
Rodrigues, M.T., 2003. Herpetofauna of the Quaternary sand dunes of the Middle Rio São Francisco, Bahia, Brazil. VIII. Amphisbaena arda sp. nov., a fuliginosa-like checkered patterned Amphisbaena (Squamata, Amphisbaenidae). Phyllomedusa 1, 5156.10.11606/issn.2316-9079.v1i2p51-56CrossRefGoogle Scholar
Sancho, C., Penã, J. L., Rivelli, F., Rhodes, E., Muñoz, A., 2008. Geomorphological evolution of the Tilcara alluvial fan (Jujuy Province, NW Argentina): tectonic implications and palaeoenvironmental considerations. Journal of South American Earth Sciences 26, 6877.10.1016/j.jsames.2008.03.005CrossRefGoogle Scholar
Schobbenhaus, C. (Ed.), 1984. Grandes sistemas do Mapa Geológico do Brasil e da Área Oceânica Adjacente Incluindo Depósitos Minerais, Escala 1:25.000.000. Divisão de Geologia e Mineralogia, Departamento Nacional da Produção Mineral.Google Scholar
Silva, P.A., Vieira, G.G., Farinasso, M., Carlos, R.J., 2003. Determinação da extensão do Rio São Francisco. Anais do XI Simpósio Brasileiro de Sensoriamento Remoto, Belo Horizonte, Brasil, 05–10 Abril 2003, INPE, pp. 393400.Google Scholar
Soares, P.C., Fiori, A.P., 1976. Lógica e sistemática na análise e interpretação de fotografias aéreas em Geologia. Notícia Geomorfológica 16, 71104.Google Scholar
Sousa, D.V., Spinola, D., dos Santos, J.C., Tatumi, S.H., Yee, M., Oliveira, R.A.P., Eltink, E., et al., 2023. Relict soil features in cave sediments record periods of wet climate and dense vegetation over the last 100 kyr in a present-day semiarid region of northeast Brazil. Catena 226, 107092. https://doi.org/10.1016/j.catena.2023.107092.CrossRefGoogle Scholar
Stone, A.E.C., Thomas, D.S.G., 2008. Linear dune accumulation chronologies from the southwest Kalahari, Namibia: challenges of reconstructing late Quaternary palaeoenvironments from aeolian landforms. Quaternary Science Reviews 27, 16671681.10.1016/j.quascirev.2008.06.008CrossRefGoogle Scholar
Stríkis, N.M., Chiessi, C.M., Cruz, F.W., Vuille, M., Cheng, H., de Souza Barreto, E.A., Mollenhauer, G., et al., 2015. Timing and structure of mega-SACZ events during Heinrich stadial 1. Geophysical Research Letters 42, 54775484A.10.1002/2015GL064048CrossRefGoogle Scholar
Stríkis, N.M., Cruz, F.W., Barreto, E.A.S., Naughton, F., Vuille, M., Cheng, H., Voelker, A.H.L., et al., 2018. South American monsoon response to iceberg discharge in the North Atlantic. Proceedings of the National Academy of Science 115, 37883793. https://doi.org/10.1073/pnas.1717784115.CrossRefGoogle ScholarPubMed
Terrizzano, C.M., Morabito, E.G., Christl, M., Likerman, J., Tobal, J., Yamin, M., Zech, R., 2017. Climatic and tectonic forcing on alluvial fans in the Southern Central Andes. Quaternary Science Reviews 172, 131141.10.1016/j.quascirev.2017.08.002CrossRefGoogle Scholar
Thomas, D.S.G., 2013. Reconstructing paleoenvironments and palaeoclimates in drylands: what can landform analysis contribute? Earth Surface Processes and Landforms 38, 316.CrossRefGoogle Scholar
Thomas, D.S.G., Shaw, P.A., 1991. The Kalahari Environment. Cambridge University Press, Cambridge, UK.Google Scholar
Thornthwaite, C.W., 1948. An approach toward a rational classification of climate. Geographical Review 38, 5594.10.2307/210739CrossRefGoogle Scholar
Tripaldi, A., Zárate, M.A., 2016. A review of late Quaternary inland dune systems of South America east of the Andes. Quaternary International 410, 96110.10.1016/j.quaint.2014.06.069CrossRefGoogle Scholar
Veneziani, P., Anjos, C.E., 1982. Metodologia de Interpretação de Dados de Sensoriamento Remoto e Aplicações em Geologia. INPE, São José dos Campos, 54 pp.Google Scholar
Wainwright, J., Bracken, L.J., 2011. Runoff generation, overland flow and erosion on hillslopes. In: Thomas, D.S. (Ed.), Arid Zone Geomorphology, Process, Form and Change in Drylands. Wiley-Blackwell, Chichester, UK, pp. 237267.Google Scholar
Wang, X., Auler, A.S., Edwards, R.L., Cheng, H., Cristalli, P.S., Smart, P.L., Richards, D.A., Shen, C.-C., 2004. Wet periods in northeastern Brazil over the past 210 kyr linked to distant climate anomalies. Nature 432, 740743.10.1038/nature03067CrossRefGoogle ScholarPubMed
Wintle, A.G., 1997. Luminescence dating: laboratory procedures and protocols. Radiation Measurements 27, 769817.10.1016/S1350-4487(97)00220-5CrossRefGoogle Scholar
Zani, H., Assine, M.L., McGlue, M.M., 2012. Remote sensing analysis of depositional landforms in alluvial settings: method development and application to the Taquari megafan, Pantanal (Brazil). Geomorphology 161, 8292.10.1016/j.geomorph.2012.04.003CrossRefGoogle Scholar