Hostname: page-component-5b777bbd6c-7mr9c Total loading time: 0 Render date: 2025-06-18T20:32:42.978Z Has data issue: false hasContentIssue false

New exposures of Lava Creek ash more closely constrain the age of the Sacagawea Ridge glaciation, Wind River Mountains, Wyoming (USA)

Published online by Cambridge University Press:  22 May 2025

Dennis Dahms*
Affiliation:
Department of Geography, University of Northern Iowa, Cedar Falls, IA, USA
Markus Egli
Affiliation:
Department of Geography, University of Zürich, Switzerland
William C. McIntosh
Affiliation:
New Mexico Bureau of Geology and Mineral Resources, New Mexico Institute of Mining and Technology, Socorro, NM, USA
Nels Iverson
Affiliation:
New Mexico Bureau of Geology and Mineral Resources, New Mexico Institute of Mining and Technology, Socorro, NM, USA
Nelia W. Dunbar
Affiliation:
New Mexico Bureau of Geology and Mineral Resources, New Mexico Institute of Mining and Technology, Socorro, NM, USA
*
Corresponding author: Dennis Dahms; Email: dennis.dahms@uni.edu

Abstract

Geochemical and 40Ar/39Ar age analyses of a new exposure of a previously destroyed volcanic ash locality within the Airport Terrace above the Middle Popo Agie River in Lander, Wyoming, allows us to re-establish it as Lava Creek A from the last major eruption of the Yellowstone caldera, with a weighted mean age of 628.2 ± 4.1 ka. Confirmation of the ash as Lava Creek more firmly establishes correlation of the terrace with the WR-7 terraces along the Wind River that contain Lava Creek ash and with outwash correlated to the Sacagawea Ridge type moraine at Dinwoody Lakes. By projecting the Airport Terrace gradient upstream, we show that it grades to the previously mapped terminus of the Sacagawea Ridge valley glacier. Additionally, 10Be boulder-exposure ages of ca. 521, ca. 554, and ca. 556 ka from Sacagawea Ridge moraines in nearby canyons support more closely constraining the Sacagawea Ridge glaciation here to Marine Oxygen Isotope Stage 16, which corresponds with recent evidence for an advance of the Laurentide Ice Sheet at this time in the U.S. midcontinent.

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Quaternary Research Center.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Anders, M.A., Saltzman, J., Hemming, S.R., 2009. Neogene tephra correlations in eastern Idaho and Wyoming: implications for Yellowstone hotspot-related volcanism and tectonic activity. GSA Bulletin 121, 837856. https://doi.org/10.1130/B26300.1CrossRefGoogle Scholar
Bachman, G.O., Machette, M.N., 1977. Calcitic soils and calcretes in the southwestern United States. USGS Open-file Report 77-749, 163 pp. https://doi.org/10.3133/ofr77794Google Scholar
Bacon, C.R., 1983. Eruptive history of Mt. Mazama and Crater Lake caldera, Cascade Range, USA. Journal of Volcanology and Geothermal Research 18, 57115. https://doi.org/10.1016/0377-0273(83)90004-5CrossRefGoogle Scholar
Bailey, R.A., Dalrymple, G.B., Lanphere, M.A., 1976. Volcanism, structure and geochronology of Long Valley Caldera, Mono Country, California. Journal of Geophysical Research 81, 725744. https://doi.org/10.1029/JB081i005p00725CrossRefGoogle Scholar
Balco, G., Rovey, C.W., II, 2010. Absolute chronology for major Pleistocene advances of the Laurentide ice sheet. Geology 38, 795–798. https://doi.org/10.1130/G30946.1CrossRefGoogle Scholar
D.I, Benn., 2009. Glaciofluvial sediments. In: Gornitz, V. (Ed.), Encyclopedia of Paleoclimatology and Ancient Environments. Encyclopedia of Earth Sciences Series. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-4411-3_98Google Scholar
Birkeland, P.W., 1999. Soils and Geomorphology. Oxford University Press, Oxford, UK.Google Scholar
Blackwelder, E., 1915. Post-Cretaceous history of the mountains of western Wyoming. Journal of Geology 23, 302340.10.1086/622226CrossRefGoogle Scholar
Chadwick, O.A., Hall, R.D., Kelly, G., Amundson, G., Gosse, J., Phillips, F., Jaworowski, C., 1994. Quaternary Geology of the Wind River Basin, Wyoming. Friends of the Pleistocene Rocky Mountain Cell, Guidebook for Field Conference, 141 p.Google Scholar
Chadwick, O.A., Hall, R.D., Phillips, F.M., 1997. Chronology of Pleistocene glacial advances in the central Rocky Mountains. Geological Society of America Bulletin 109, 14431452. https://doi.org/10.1130/0016-7606(1997)109<1443:COPGAI>2.3.CO;22.3.CO;2>CrossRefGoogle Scholar
Chmeleff, J., von Blanckenburg, F., Kossert, K., Jakob, D., 2010. Determination of the 10Be half-life by multicollector ICP-MS and liquid scintillation counting. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 268, 192199. https://doi.org/10.1016/j.nimb.2009.09.012CrossRefGoogle Scholar
Christiansen, R.L., 2001. The Quaternary and Pliocene Yellowstone Plateau Volcanic Field of Wyoming, Idaho, and Montana. USGS Professional Paper 729-G, 145 p. https://doi.org/10.3133/pp729gGoogle Scholar
Christl, M., Vockenhuber, C., Kubik, P., Wacker, L., Lachner, J., Alfimov, V., Synal, H.A., 2013. The ETH Zurich AMS facilities: performance parameters and reference materials. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 294, 2938. https://doi.org/10.1016/j.nimb.2012.03.004CrossRefGoogle Scholar
Dahms, D.E., 1993. Mineralogical evidence for eolian contribution to soils of late Quaternary moraines, Wind River Mountains, Wyoming, USA. Geoderma 59, 175196. https://doi.org/10.1016/0016-7061(93)90068-VCrossRefGoogle Scholar
Dahms, D.E., 2004. Relative and numeric age data for Pleistocene glacial deposits and diamictons in and near Sinks Canyon, Wind River Range, Wyoming, USA. Arctic, Antarctic and Alpine Research 36, 5977. https://doi.org/10.1657/1523-0430(2004)036[0059:RANADF]2.0.CO;2Google Scholar
Dahms, D.E., Egli, M., 2016. Carbonate and elemental accumulation rates in arid soils of mid-to-late Pleistocene outwash terraces, southeastern Wind River Range. Chemical Geology 446, 147162. https://doi.org/10.1016/j.chemgeo.2015.12.006CrossRefGoogle Scholar
Dahms, D.E., Egli, M., Brandova, D., de Castro Portes, R., Fabel, D., Harbor, J., Christl, M., 2018. Revised Quaternary glacial succession and post-LGM recession, southern Wind River Range, Wyoming, USA. Quaternary Science Reviews 192, 167184. https://doi.org/10.1016/j.quascirev.2018.05.020CrossRefGoogle Scholar
Davies, B.E., 1974. Loss-on-ignition as an estimate of soil organic matter. Soil Science Society of America Journal 38, 150151. https://doi.org/10.2136/sssaj1974.03615995003800010046xCrossRefGoogle Scholar
Davis, J.O., 1978. Tephrochronology of the Lake Lahontan area, Nevada and California: Nevada Archaeological Survey Research Paper 7, 137 p.Google Scholar
Dean, W.E., Kennett, J.P., Behl, R.J., Nicholson, C., Sorlein, C.C., 2015. Abrupt termination (VII) at 631.5 ka in Santa Barbara Basin, California. Paleoceanography and Paleoclimatology 30, 13731390. https://doi.org/10.1002/2014PA002756CrossRefGoogle Scholar
Derakhshan-Babaei, F., Nosrati, K., Tikhomirov, D., Christl, M., Sadough, H., Egli, M., 2020. Relating the spatial variability of chemical weathering and erosion to geological and topographical zones. Geomorphology 363, 107235. https://doi.org/10.1016/j.geomorph.2020.107235CrossRefGoogle Scholar
Dethier, D.P., 2001. Pleistocene incision rates in the western United States calibrated using Lava Creek B tephra. Geology 29, 783786. https://doi.org/10.1130/0091-7613(2001)029<0783:PIRITW>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Dühnforth, M., Anderson, R.S., Ward, D.J., Blum, A., 2012. Unsteady Late Pleistocene incision of streams bounding the Colorado Front Range from measurements of meteoric in in situ 10Be. Journal of Geophysical Research 117, FO1023. https://doi.org/10.1029/2011JF002232CrossRefGoogle Scholar
Dürig, T., Ross, P-S., Dellino, P., White, J.D.L., Mele, D., Comida, P.P., 2021. A review of statistical tools for morphometric analysis of juvenile pyroclasts. Bulletin of Volcanology 83, 79. https://doi.org/10.1007/s00445-021-01500-0CrossRefGoogle Scholar
Egli, M., Brandová, D., Böhlert, R., Favilli, F., Kubik, P., 2010. 10Be inventories in Alpine soils and their potential for dating land surfaces. Geomorphology 119, 6273. https://doi.org/10.1016/j.geomorph.2010.02.019CrossRefGoogle Scholar
Egli, M., Dahms, D., Dumitrescu, M., Derachshan-Babaei, F., Christl, M., Tikhomirov, D., 2020. Landscape evolution, post-LGM surface denudation and soil weathering processes from Dickinson Park mire, Wind River Range, Wyoming (USA). Geomorphology 371, 215. https://doi.org/10.1016/j.geomorph.2020.107433CrossRefGoogle Scholar
Elderfield, H., Ferretti, P., Greaves, M., Crowhurst, S., McCave, I.N., Hodell, D., Piotrowski, A.M., 2012. Evolution of ocean temperature and ice volume through the mid-Pleistocene climate transition. Science 337, 704709. https://doi.org/10.1126/Science.1221294CrossRefGoogle ScholarPubMed
Esser, R.P., McIntosh, W.C., Heizler, M.T., Kyle, P.R., 1997. Excess argon in melt inclusions in zero-age anorthoclase feldspar from Mt. Erebus, Antarctica, as revealed by the 40Ar39Ar method. Geochemica et Cosmochemica Acta 61, 37893801. https://doi.org/10.1016/S0016-7037(97)00287-1CrossRefGoogle Scholar
Fisher, R.V., Schmincke, H.U., 1984, Pyroclastic Rocks. Springer-Verlag, New York, 472 pp.10.1007/978-3-642-74864-6CrossRefGoogle Scholar
Ford, H.L., Sosdian, S.M., Rosenthal, Y., Raymo, M.E., 2016. Gradual and abrupt changes during the Mid-Pleistocene transition. Quaternary Science Reviews 148, 222233. https://doi.org/10.1016/j.quascirev.2016.07.005CrossRefGoogle Scholar
Foster, M.A., Anderson, R.S., Gray, H.J., Mahan, S.A., 2017. Dating of river terraces along Lefthand Creek, western High Plains, Colorado, reveals punctuated incision. Geomorphology 295, 176190. https://doi.org/10.1016/j.geomorph.2017.04.044CrossRefGoogle Scholar
Gansecki, C.A., 1996. Ar/Ar geochronology and pre‐eruptive geochemistry of the Yellowstone Plateau volcanic field rhyolites. PhD dissertation, Stanford University, Palo Alto, California, 114 pp.Google Scholar
Gansecki, C.A., Mahood, G.A., McWilliams, M.O., 1998. Ar/Ar geochronology of rhyolites erupted following collapse of the Yellowstone caldera, Yellowstone Plateau volcanic field: implications for crustal contamination. Earth and Planetary Science Letters 142, 91107. https://doi.org/10.1016/0012-821X(96)00088-XCrossRefGoogle Scholar
Gibbard, P.L., Cohen, K.M., 2019. Global chronostratigraphical correlation table for the last 2.7 million years, version 2019 QI-500. Quaternary International 500, 2031. https://doi.org/10.1016/j.quaint.2019.03.009Google Scholar
Gile, L.H., Hawley, J.W., Grossman, R.B., 1981. Soils and geomorphology in the basin and range area of southern New Mexico—guidebook to the Desert Project. New Mexico Bureau of Mines and Mineral Resources, Memoir 39. University of New Mexico Printing Plant, Socorro, 222 pp.10.58799/M-39CrossRefGoogle Scholar
Gile, L.H., Peterson, F.F., Grossman, R.B., 1966. Morphologic and genetic sequences of carbonate accumulation in desert soils. Soil Science 101, 347–360.10.1097/00010694-196605000-00001CrossRefGoogle Scholar
Gosse, J.C., 1994. Alpine glacial history reconstruction: 1. Application of the cosmogenic beryllium-10 exposure age method to determine the glacial chronology of the Wind River Mountains, Wyoming, United States of America. 2. Relative dating of Quaternary deposits in the Rio Atuel Valley, Mendoza, Argentina. PhD Dissertation, Geological Sciences, Lehigh University, Bethlehem, Pennsylvania.Google Scholar
Gosse, J.C., Evenson, E.B., Klein, J., Sorenson, C.J., 2003. Cosmogenic nuclide glacial geochronology in the Wind River Range, Wyoming. In: Easterbrook, D. (Ed.), Quaternary Geology of the United States, INQUA 2003 Field Guide. Desert Research Institute, Reno, Nevada, pp. 4956.Google Scholar
Gosse, J.C., Phillips, F.M., 2001. Terrestrial in situ cosmogenic nuclides: theory and application. Quaternary Science Reviews 20, 14751560. https://doi.org/10.1016/S0277-3791(00)00171-2CrossRefGoogle Scholar
Gustavson, T.C., Baumgartner, R.W. Jr., Caran, S.C., Holliday, V.T., Mehnert, H.H., Reeves, C.C., Jr. 1991. Quaternary geology of the southern Great Plains and an adjacent segment of the Rolling Plains. In: Morrison, R.B. (Ed.), Quaternary Nonglacial Geology: Conterminous U.S. DNAG, The Geology of North America, K-2, Geological Society of America, Boulder, CO, pp. 477501. https://doi.org/10.1130/DNAG-GNA-K2.477CrossRefGoogle Scholar
Hall, R.D., 1999. Effects of climate change on soils in glacial deposits, Wind River Basin, Wyoming. Quaternary Research 51, 248261. https://doi.org/10.1006/qres.1999.2032CrossRefGoogle Scholar
Hall, R.D., Jaworowski, C., 1999. Reinterpretation of the Cedar Ridge section, Wind River Range, Wyoming: implications for the glacial chronology of the Rocky Mountains. Geological Society of America Bulletin 111, 12331249. https://doi.org/10.1130/0016-7606(1999)111<1233:ROTCRS>2.3.CO;22.3.CO;2>CrossRefGoogle Scholar
Hall, R.D., Shroba, R.R., 1993. Soils developed in the glacial deposits of the type areas of the Pinedale and Bull Lake glaciations, Wind River Range, Wyoming, U.S.A. Arctic and Alpine Research 25, 368373. https://doi.org/10.2307/1551919CrossRefGoogle Scholar
Hall, R.D., Shroba, R.R., 1995. Soil evidence for a glaciation intermediate between the Bull Lake and Pinedale glaciations at Fremont Lake, Wind River Range, Wyoming, USA. Arctic and Alpine Research 27, 8798. https://doi.org/10.2307/1552071CrossRefGoogle Scholar
Hallberg, G., 1980. Pleistocene stratigraphy in east-central Iowa: Iowa Geological Survey Technical Information Series 10, 168 pp. https://doi.org/10.17077/rep.006533CrossRefGoogle Scholar
Hallberg, G., 1986. Pre-Wisconsin glacial stratigraphy of the central plains region in Iowa, Nebraska, Kansas, and Missouri. Quaternary Science Reviews 5, 1115.10.1016/S0277-3791(86)80004-XCrossRefGoogle Scholar
Hancock, G.S., Anderson, R.S., 2002. Numerical modeling of fluvial strath-terraces formation in response to oscillating climate. Geological Society of America Bulletin 114, 11311142. https://doi.org/10.1130/0016-7606(2002)114<1131:NMOFST>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Hancock, G.S., Anderson, R.S., Chadwick, O.A., Finkel, R.C., 1999. Dating fluvial terraces with 10Be and 26Al profiles: application to the Wind River, Wyoming. Geomorphology 27, 4160. https://doi.org/10.1016/S0169-555X(98)00089-0CrossRefGoogle Scholar
Hausel, W.D., Love, J.D., 1991, Field guide to the geology and mineralization of the South Pass region, Wind River Range, Wyoming. In: Frost, B.R., Roberts, S.M., Mineral Resources of Wyoming. Wyoming Geological Association, 42nd Annual Field Conference Guidebook, pp. 181200.Google Scholar
Heiken, G., Wohletz, K.H., 1985. Volcanic Ash. University of California Press, Berkeley, California, 245 p.10.1525/9780520420168CrossRefGoogle Scholar
Hildreth, W., Mahood, G., 1985. Correlation of ash-flow tuffs. Geological Society of America Bulletin 96, 968974. https://doi.org/10.1130/0016-7606(1985)96%3C968:COAT%3E2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Horiuchi, K., Minoura, K., Kobayashi, K., Nakamura, T., Hatori, S., Matsuzaki, H., Kawai, T., 1999. Last-glacial to post-glacial 10Be fluctuations in a sediment core from the Academician Ridge, Lake Baikal. Geophysical Research Letters 26, 10471050. https://doi.org/10.1029/1999GL900163CrossRefGoogle Scholar
Iverson, N.A., Kyle, P.R., Dunbar, N.W., McIntosh, W.C., Pearce, N.J.G., 2014. Eruptive history and magmatic stability of Erebus volcano, Antarctica: insights from englacial tephra. Geochemistry, Geophysics, Geosystems 15, 41804202. https://doi.org/10.1002/2014GC005435CrossRefGoogle Scholar
Izett, G.A., 1981. Volcanic ash beds: recorders of upper Cenozoic silicic pyroclastic volcanism in the western United States. Journal of Geophysical Research 86, 1020010222. https://doi.org/10.1029/JB086iB11p10200CrossRefGoogle Scholar
Izett, G.A., Obradovish, J.D., Naeser, C.W., Cebula, C.T., 1981. Potassium–argon and fission-track zircon ages of Cerro Toledo Rhyolite Tephra in the Jemez Mountains, New Mexico. In: Shorter Contributions to Isotope Research in the Western United States, 1980. USGS Professional Paper 1199-D, p. 37–43.Google Scholar
Izett, G.A., Pierce, K.L., Naeser, N.D., Jaworowski, C., 1992. Isotopic dating of Lava Creek B tephra in terrace deposits along the Wind River, Wyoming—implications for post 0.6 Ma uplift of the Yellowstone hotspot. Geological Society of America, Abstracts with Programs 24(7), A102.Google Scholar
Izett, G.A., Wilcox, R.E., 1982. Map showing localities and inferred distributions of the Huckleberry Ridge, Mesa Falls, and Lava Creek ash beds (Pearlette family ash beds) of Pliocene and Pleistocene age in the western United States and southern Canada: U.S. Geological Survey Miscellaneous Investigations IMAP 1325. https://doi.org/10.3133/i1325Google Scholar
Jackson, M.L., 1969. Soil Chemical Analysis: Advanced Course. Department of Soil Science, University of Wisconsin, Madison, Wisconsin, 895 pp.Google Scholar
Jaworowski, C., 1992. A probable new Lava Creek ash locality: implications for Quaternary geologic studies in the western Wind River Basin, Wyoming, USA. Contributions to Geology, University of Wyoming 29, 111117.Google Scholar
Jaworowski, C., 1993. Geologic implications of Quaternary tephra localities in the western Wind River Basin, Wyoming. In: Keefer, W.R., Metzger, W.J., Godwin, L.H. (Eds.), Oil and Gas and other Resources of the Wind River Basin, Wyoming; Special Symposium–1993. Wyoming Geological Association Guidebook, pp. 191205.Google Scholar
Klute, A. (Ed.), 1986. Methods of Soil Analysis: Part 1, Physical and Mineralogical Methods, 2nd edit. American Society of Agronomy, Madison, Wisconsin.10.2136/sssabookser5.1.2edCrossRefGoogle Scholar
Koning, D.J., Grauch, V.J.S., Connell, S.D., Ferguson, J., McIntosh, W., Slate, J.L., Wan., E., Baldridge, W.S., 2013. Structure and tectonic evolution of the eastern Española Basin, Rio Grande rift, north-central New Mexico. In: Hudson, M., Grauch, V.J.S. (Eds.), New Perspectives on the Rio Grande Rift: From Tectonics to Groundwater. Geological Society of America, Special Paper 494, 185219. https://doi.org/10.1130/2013.2494(08)Google Scholar
Korschinek, G., Bergmaier, A., Faestermann, T., Gerstmann, U., Knie, K., Rugel, G., Wallner, A., et al., 2010. A new value for the half-life of 10Be by heavy-ion elastic recoil detection and liquid scintillation counting. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 268, 187191. https://doi.org/10.1016/j.nimb.2009.09.020CrossRefGoogle Scholar
Kuiper, K.F., Deino, A., Hilgen, F.J., Krijgsman, W., Renne, P.R., Wijbrans, J.R., 2008. Synchronizing the rock clocks of Earth history. Science 320, 500504. https://doi.org/10.1126/science.1154339CrossRefGoogle ScholarPubMed
Laabs, B.J.C., Licciardi, J.M., Leonard, E.M., Munroe, J.S., Marchetti, D.W., 2020. Updated cosmogenic chronologies of Pleistocene mountain glaciation in the western United States and associated paleoclimate inferences. Quaternary Science Reviews 242, 106427. https://doi.org/10.1016/j.quascirev.2020.106427CrossRefGoogle Scholar
Lanphere, M.A., Champion, D.E., Christianson, R.L., Izett, G.A., Obradovich, J.D., 2002. Revised ages for tuffs of the Yellowstone Plateau volcanic field: assignment of the Huckleberry Ridge Tuff to a new geomagnetic polarity event. Geological Society of America Bulletin 114, 559568. https://doi.org/10.1130/0016-7606(2002)114<0559:RAFTOT>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Licciardi, J.M., Pierce, K.L., 2008. Cosmogenic exposure-age chronologies of Pinedale and Bull Lake glaciations in greater Yellowstone and the Teton Range, USA. Quaternary Science Reviews 27, 814831. https://doi.org/10.1016/j.quascirev.2007.12.005.CrossRefGoogle Scholar
Lisiecki, L.E., Raymo, M.E., 2005. A Pliocene–Pleistocene globally distributed benthic δ 18O records. Paleoceanography 20, PA1003. https://doi.org/10.1029/2004PA001071Google Scholar
Maejima, Y., Matsuzaki, H., Higashi, T., 2005. Application of cosmogenic 10Be to dating soils on the raised coral reef terraces of Kikai Island, southwest Japan. Geoderma 126, 389399. https://doi.org/10.1016/J.GEODERMA.2004.10.004CrossRefGoogle Scholar
Matthews, N.E., Vazquez, J.A., Calvert, A.T., 2015. Age of the Lava Creek supereruption and magma chamber assembly at Yellowstone based on 40Ar/39Ar and U–Pb dating of sanidine and zircon crystals. Geochemistry, Geophysics, Geosystems 16, 25082528. https://doi.org/10.1002/2015GC005881CrossRefGoogle Scholar
Monaghan, M.C., Krishnaswami, S., Turekian, K.K., 1986. The global average production rate of 10Be. Earth and Planetary Science Letters 76, 279287. https://doi.org/10.1016/0012-821X(86)90079-8CrossRefGoogle Scholar
Morrison, R.B., Wright, H.E. (Eds.), 1968. Means of Correlation of Quaternary Successions, Vol. 8. University of Utah Press, Salt Lake City.Google Scholar
Murphy, J.F., Richmond, G.M., 1965. Geologic Map of the Bull Lake West Quadrangle, Fremont County, Wyoming. U.S. Geological Survey Map GQ-432. https://doi.org/10.3133/gq432Google Scholar
Nettleton, W.D., Chadwick, O.A., 1991. Soil-landscape relationships in the Wind River Basin Wyoming. The Mountain Geologist 28, 311.Google Scholar
Nishiizumi, K., Imamura, M., Caffee, M.W., Southon, J.R., Finkel, R.C., McAninch, J., 2007. Absolute calibration of 10Be AMS standards. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 25, 403413. https://doi.org/10.1016/j.nimb.2007.01.297CrossRefGoogle Scholar
Odom, W.E., Ruleman, C.A., Sterne, E.J., O’Keefe, M.K., Morgan, M.L., 2024. Cosmogenic 26Al/10Be isochron burial data for the Nussbaum Gravel at Baculite Mesa, CO. U.S. Geological Survey Data Release. https://doi.org/10.5066/P1B2MCHGGoogle Scholar
Palmquist, R., 1983. Terrace chronologies in the Bighorn Basin, Wyoming. In: Wyoming Geological Association, 34th Annual Field Conference Guidebook, pp. 217232.Google Scholar
Patterson, C.J., 1997. Southern Laurentide ice lobes were created by ice streams: Des Moines Lobe in Minnesota, USA. Sedimentary Geology 111, 249261. https://doi.org/10.1016/S0037-0738(97)00018-3CrossRefGoogle Scholar
Patterson, C.J., 1998. Laurentide glacial landscapes: the role of ice streams. Geology 26, 643646. https://doi.org/10.1130/0091-7613(1998)026<0643:LGLTRO>2.3.CO;22.3.CO;2>CrossRefGoogle Scholar
Pavich, J.M., Vidic, N., 1993. Application of paleomagnetic and 10Be analyses to chronostratigraphy of Alpine glaciofluvial terraces, Sava River Valley, Slovenia. In: Swart, P.K., Lohmann, K.C., Savin, M.S. (Eds.), Climate Change in Continental Isotopic Records: Geophysical Monographs 78, 263275. https://doi.org/10.1029/GM078p0263Google Scholar
Perkins, M., Nash, W., Brown, F., Fleck, R., 1995. Fallout tuffs of Trapper Creek, Idaho—a record of Miocene explosive volcanism in the Snake River Plain volcanic province: Geological Society of America Bulletin 107, 14841506. https://doi.org/10.1130/0016-7606(1995)107<1484:FTOTCI>2.3.CO;22.3.CO;2>CrossRefGoogle Scholar
Phillips, F.M., Zreda, M.G., Gosse, J.C., Klein, J. Evenson, E.B. Hall, R.D., Chadwick, O.A., Sharma, P., 1997. Cosmogenic 36Cl and 10Be ages of Quaternary glacial and fluvial deposits of the Wind River Range, Wyoming. Geological Society of America Bulletin 109, 14531463. https://doi.org/10.1130/0016-7606(1997)109%3C1453:CCABAO%3E2.3.CO;22.3.CO;2>CrossRefGoogle Scholar
Reheis, M.C., 1987. Soils in granitic alluvium in humid and semi-humid climates along Rock Creek, Carbon County, Montana: U.S. Geological Survey Bulletin 1590-D, D1D71. https://doi.org/10.3133/b1590DGoogle Scholar
Reheis, M.C., Ritter, D.F., Palmquist, R.C., 1984. Late Cenozoic History and Soil Development, Northern Bighorn Basin, Wyoming and Montana. Guidebook for the Joint Field Trip of the Friends of the Pleistocene, Rocky Mountain Cell, and the American Quaternary Association, August 10–11, 1984, 49 pp.Google Scholar
Richmond, G.M., 1973. Geologic Map of the Fremont Lake South Quadrangle, Sublette County, Wyoming. U.S. Geological Survey, Map GQ-1138. https://doi.org/10.3133/gq1138Google Scholar
Richmond, G.M., 1986. Stratigraphy and correlation of glacial deposits of the Rocky Mountains, the Colorado Plateau, and the ranges of the Great Basin. In: Sibrava, V., Bowen, D.Q., G.M, Richmond. (Eds.), Quaternary Glaciations of the Northern Hemisphere. Pergamon Press, Oxford, UK, pp. 99127.Google Scholar
Richmond, G.M., 1987. Type Pinedale Till in the Fremont Lake area, Wind River Range, Wyoming. In: Beus, S.S. (Ed.), DNAG Centennial Field Guides, Rocky Mountain Section of the Geological Society of America, vol. 2, pp. 201204. https://doi.org/10.1130/0-8137-5402-X.201CrossRefGoogle Scholar
Richmond, G.M., Murphy, J.F., 1965. Geologic Map of the Bull Lake East Quadrangle, Fremont County, Wyoming. U.S. Geological Survey Map GQ-431. https://doi.org/10.3133/gq431Google Scholar
Richmond, G.M., Murphy, J.F., 1989. Preliminary Quaternary geologic map of the Dinwoody Lake area, Fremont County Wyoming. U.S. Geological Survey, Open File Report 89-435. https://doi.org/10.3133/ofr89435Google Scholar
Rieck, H.J., Sarna-Wojcicki, A.M., Meyer, C.E., Adam, D.P., 1992. Magnetostratigraphy and tephrochronology of an upper Pliocene to Holocene record in lake sediments at Tule Lake, northern California. Geological Society of America Bulletin 104, 409428.10.1130/0016-7606(1992)104<0409:MATOAU>2.3.CO;22.3.CO;2>CrossRefGoogle Scholar
Rogers, K.L., Larsen, E.E., Smith, G., Katzman, D., Smith G.R., Cerling, T., Wang, Y., et al., 1992. Pliocene and Pleistocene geologic and climatic evolution in the San Luis Valley of south-central Colorado. Palaeogeography, Palaeoclimatology, Palaeoecology 94, 55–86. https://doi.org/10.1016/0031-0182(92)90113-JCrossRefGoogle Scholar
Rogers, K.L., Repenning, C.A., Forester, R.M., Larson, E.E., Hall, S.A., Smith, G.R., Anderson, E., Brown, T.J., 1985. Middle Pleistocene (late Irvingtonian: Nebraskan) climate changes in south-central Colorado. National Geographic Research 1, 535–563.Google Scholar
Ross, P.-S., Dürig, T., Comida, P.P., Lefebvre, N., White, J.D.L., Andronico, D., Thivet, S., Eychenne, J., Gurioli, J., 2022. Standardized analysis of juvenile pyroclasts in comparative studies of primary magma fragmentation; 1. Overview and workflow. Bulletin of Volcanology 84, 13. https://doi.org/10.1007/s00445-021-01516-6CrossRefGoogle Scholar
Rovey, C.W., II, Balco, G., 2011. Summary of Early and Middle Pleistocene glaciations in northern Missouri, USA. In: Ehlers, J., Gibbard, P.L., Hughes, P.D. (Eds.), Quaternary Glaciations—Extent and Chronology, a Closer Look. Developments in Quaternary Sciences 15, 553561. https://doi.org/10.1016/B978-0-444-53447-7.00043-XCrossRefGoogle Scholar
Rovey, C.W., II, McLouth, T., 2015. A near synthesis of pre-Illinoian till stratigraphy in the central United States: Iowa, Nebraska and Missouri. Quaternary Science Reviews 126, 96111. https://doi.org/10.1016/j.quascirev.2015.08.024CrossRefGoogle Scholar
Rovey, C.W., II, Siemens, M., 2021. Age constraints of the Middle Pleistocene till and loess sequence in northeast Missouri, USA, based on pedostratigraphy within a polygenetic paleosol. Catena 203, 105294. https://doi.org/10.1016/j.catena.2021.105294CrossRefGoogle Scholar
Sarna-Wojcicki, A.M., Bowman, H.R., Meyer, C.E., Russell, P.C., Woodward, M.J., McCoy, G., Rowe, J.J. Jr, Baedecker, P.A., Asaro, F., Michael, H., 1984. Chemical analyses, correlations, and ages of upper Pliocene and Pleistocene ash layers of east-central and southern California. U.S. Geological Survey Professional Paper 1293, 40. https://doi.org/10.3133/pp1293Google Scholar
Schmidt, D.L., Mackin, J.H., 1970. Quaternary geology of Long and Bear valleys, west-central Idaho. U.S. Geological Survey, Bulletin 1311-A, A1A22. https://doi.org/10.3133/b1311AGoogle Scholar
Sharp, W.D., Ludwig, K.R., Chadwick, O.A., Amundson, R., Glaser, L.L., 2003. Dating fluvial terraces by 230Th/U on pedogenic carbonate, Wind River Basin, Wyoming. Quaternary Research 59, 139150. https://doi.org/10.1016/S0033-5894(03)00003-6CrossRefGoogle Scholar
Singer, M.J., Janitzky, P. (Eds.), 1986. Field and laboratory procedures used in a soil chronosequence study. U.S. Geological Survey Bulletin 1648, 149. https://doi.org/10.3133/b1648Google Scholar
Smith, R.L., 1987. The influence of explosive volcanism on fluvial sedimentation: the Deschutes Formation (Neogene) in central Oregon. Journal of Sedimentary Research 57, 613629. https://doi.org/10.1306/212F8BBB-2B24-11D7-8648000102C1865DGoogle Scholar
Soil Survey Staff, 2014. Keys to Soil Taxonomy, 12th edit. USDA-Natural Resources Conservation Service, Washington, DC.Google Scholar
Sortor, R., 2022.Glacial chronologies of western North American mountain ranges from cosmogenic nuclide dating. PhD dissertation, Tulane University, New Orleans, 110 pp.Google Scholar
Stein, R., Hefter, J., Grützner, J., Voelker, A., Naafs, B.D.A., 2009. Variability of surface water characteristics and Heinrich-like events in the Pleistocene midlatitude North Atlantic Ocean: biomarker and XRD records from IODP Site U1313 (MIS 16–9). Paleoceanography 24, PA2203. https://doi.org/10.1029/2008PA001639CrossRefGoogle Scholar
Tsai, H., Maejima, Y., Hseu, Z.-Y., 2008. Meteoric 10Be dating of highly weathered soils from fluvial terraces in Taiwan. Quaternary International 188, 185196. https://doi.org/10.1016/j.quaint.2007.06.007CrossRefGoogle Scholar
Veggian, C.L., Smaglik, S.M., Dahms, D.E., 2010. Comparison of unconsolidated deposits on areas of anomalous altitude and flatness in and around the Southern Wind River Basin, Fremont County, Wyoming. Geological Society of America Abstracts with Programs 42, 294.Google Scholar
Wagenbrenner, N.S., Germino, M.J., Lamb, B.K., Robichaud, P.R., Foltz, R.B., 2013. Wind erosion from a sagebrush steppe burned by wildfire: measurements of PM10 and total horizontal sediment flux. Aeolian Research 10, 2536. https://doi.org/10.1016/j.aeolia.2012.10.003CrossRefGoogle Scholar
Walker, G.P.L., 1971. Grain-size characteristics of pyroclastic deposits. Journal of Geology 79, 696714. https://doi.org/10.1086/627699CrossRefGoogle Scholar
Wohletz, K.H., 1983. Mechanisms of hydrovolcanic pyroclast formation: grain-size, scanning electron microscopy, and experimental studies. Journal of Volcanology and Geothermal Research 17, 3163. https://doi.org/10.1016/0377-0273(83)90061-6CrossRefGoogle Scholar
Wolkowinsky, A.J., Granger, D.E., 2004. Early Pleistocene incision of the San Juan River, Utah, dated with 26Al and 10Be. Geology 32, 749752. https://doi.org/10.1130/G20541.1CrossRefGoogle Scholar
Supplementary material: File

Dahms et al. supplementary material 1

Dahms et al. supplementary material
Download Dahms et al. supplementary material 1(File)
File 27.5 KB
Supplementary material: File

Dahms et al. supplementary material 2

Dahms et al. supplementary material
Download Dahms et al. supplementary material 2(File)
File 277.8 KB