Hostname: page-component-5b777bbd6c-2c8nx Total loading time: 0 Render date: 2025-06-19T14:43:20.723Z Has data issue: false hasContentIssue false

MINIMAL MODAL LOGICS, CONSTRUCTIVE MODAL LOGICS AND THEIR RELATIONS

Published online by Cambridge University Press:  27 March 2025

TIZIANO DALMONTE*
Affiliation:
FREE UNIVERSITY OF BOZEN-BOLZANO FACULTY OF ENGINEERING NOI TECHPARK - BRUNO-BUOZZI-STRAßE 1 - VIA BRUNO BUOZZI, 1, 39100 BOZEN-BOLZANO ITALY

Abstract

We present a family of minimal modal logics (namely, modal logics based on minimal propositional logic) corresponding each to a different classical modal logic. The minimal modal logics are defined based on their classical counterparts in two distinct ways: (1) via embedding into fusions of classical modal logics through a natural extension of the Gödel–Johansson translation of minimal logic into modal logic S4; (2) via extension to modal logics of the multi- vs. single-succedent correspondence of sequent calculi for classical and minimal logic. We show that, despite being mutually independent, the two methods turn out to be equivalent for a wide class of modal systems. Moreover, we compare the resulting minimal version of K with the constructive modal logic CK studied in the literature, displaying tight relations among the two systems. Based on these relations, we also define a constructive correspondent for each minimal system, thus obtaining a family of constructive modal logics which includes CK as well as other constructive modal logics studied in the literature.

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of The Association for Symbolic Logic

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

BIBLIOGRAPHY

Alechina, N., Mendler, M., de Paiva, V., & Ritter, E. (2001). Categorical and Kripke semantics for constructive S4 modal logic. In Fribourg, L., editor. Computer Science Logic, 15th International Workshop, CSL 2001. 10th Annual Conference of the EACSL, Paris, France, September 10-13, 2001, Proceedings, volume 2142 of Lecture Notes in Computer Science, Berlin, Heidelberg: Springer, pp. 292307.Google Scholar
Arisaka, R., Das, A., & Straßburger, L. (2015). On nested sequents for constructive modal logics. Logical Methods in Computer Science, 11(3), 133.Google Scholar
Avron, A. (1996). The method of hypersequents in the proof theory of propositional nonclassical logics. In Hodges, W., Hyland, M., Steinhorn, C., Truss, J., editors. Logic: From Foundations to Applications. Oxford: Clarendon Press, pp. 132.Google Scholar
Balbiani, P., Gao, H., Gencer, Ç., & Olivetti, N. (2024). Local intuitionistic modal logics and their calculi. In Benzmüller, C., Heule, M. J. H., & Schmidt, R. A., editors. Automated Reasoning—12th International Joint Conference, IJCAR 2024, Nancy, France, July 3-6, 2024, Proceedings, Part II, volume 14740 of Lecture Notes in Computer Science, Cham: Springer, pp. 7896.Google Scholar
Balbiani, P., Gao, H., Gencer, Ç., & Olivetti, N. (2024). A natural intuitionistic modal logic: Axiomatization and bi-nested calculus. In Murano, A., & Silva, A., editors. 32nd EACSL Annual Conference on Computer Science Logic, CSL 2024, February 19-23, 2024, Naples, Italy, volume 288 of LIPIcs, 21. Schloss Dagstuhl—Leibniz-Zentrum für Informatik, pp. 113.Google Scholar
Bellin, G., de Paiva, V., & Ritter, E. (2001). Extended Curry-Howard correspondence for a basic constructive modal logic. In Araces, C. and de Rijke, M., editors. Proceedings of M4M-2.Google Scholar
Bílková, M., Majer, O., Pelis, M., & Restall, G. (2010). Relevant agents. In Beklemishev, L. D., Goranko, V., & Shehtman, V. B., editors. Advances in Modal Logic, Vol. 8. College Publications, pp. 2238.Google Scholar
Brünnler, K. (2009). Deep sequent systems for modal logic. Archive for Mathematical Logic, 48(6), 551577.Google Scholar
Chellas, B. F. (1980). Modal Logic—An Introduction. New York: Cambridge University Press.Google Scholar
D’Agostino, M., Gabbay, D. M., & Russo, A. Grafting modalities onto substructural implication systems. Studia Logica, 59(1), 65102, 1997.Google Scholar
Dalmonte, T. (2022). Wijesekera-style constructive modal logics. In Fernández-Duque, D., Palmigiano, A., & Pinchinat, S., editors. Advances in Modal Logic, Vol. 14. College Publications, pp. 281304.Google Scholar
Dalmonte, T., Grellois, C., & Olivetti, N. (2021). Terminating calculi and countermodels for constructive modal logics. In Das, A., & Negri, S., editors. Automated Reasoning with Analytic Tableaux and Related Methods—30th International Conference, TABLEAUX 2021, Birmingham, UK, September 6-9, 2021, Proceedings, volume 12842 of Lecture Notes in Computer Science, Cham: Springer, pp. 391408.Google Scholar
Das, A., & Marin, S. (2023). On intuitionistic diamonds (and lack thereof). In Ramanayake, R., & Urban, J., editors. Automated Reasoning with Analytic Tableaux and Related Methods - 32nd International Conference, TABLEAUX 2023, Prague, Czech Republic, September 18-21, 2023, Proceedings, volume 14278 of Lecture Notes in Computer Science, Cham: Springer, pp. 283301.Google Scholar
Davies, R., & Pfenning, F. (2001). A modal analysis of staged computation. Journal of the ACM, 48(3), 555604.Google Scholar
Ewald, W. B. (1986). Intuitionistic tense and modal logic. The Journal of Symbolic Logic, 51(1), 166179.Google Scholar
Fairtlough, M., & Mendler, M. (1997). Propositional lax logic. Information & Computation, 137(1), 133.Google Scholar
Ferenz, N., & Tedder, A. (2023). Neighbourhood semantics for modal relevant logics. Journal of Philosophical Logic, 52(1), 145181.Google Scholar
Fitch, F. B. (1948). Intuitionistic modal logic with quantifiers. Portugaliae Mathematica, 7(2), 113118.Google Scholar
Fuhrmann, A. (1990). Models for relevant modal logics. Studia Logica, 49(4), 501514.Google Scholar
Gabbay, D. M., Kurucz, A., Wolter, F., & Zakharyaschev, M. (2003). Many-Dimensional Modal Logics: Theory and Applications. Amsterdam: Elsevier Science B.V.Google Scholar
Garg, D., Bauer, L., Bowers, K. D., Pfenning, F., & Reiter, M. K. (2006). A linear logic of authorization and knowledge. In Gollmann, D., Meier, J., & Sabelfeld, A., editors. Computer Security—ESORICS 2006, 11th European Symposium on Research in Computer Security, Hamburg, Germany, September 18-20, 2006, Proceedings, volume 4189 of Lecture Notes in Computer Science, Berlin, Heidelberg: Springer, pp. 297312.Google Scholar
Gasquet, O., & Herzig, A. (1996). From classical to normal modal logics. In Wansing, H., editor. Proof Theory of Modal Logic. Dordrecht: Springer, pp. 293311.Google Scholar
Gentzen, G. (1935). Untersuchungen über das logische Schliessen I. Matematische Zeitschrift, 39(1), 176210.Google Scholar
Gödel, K. (1933). Eine Interpretation des intuitionistischen Aussagenkalküls. Ergebnisse eines mathematischen Kolloquiums, 4, 3940.Google Scholar
de Groot, J., Shillito, I., & Clouston, R. (2024). Semantical analysis of intuitionistic modal logics between CK and IK. Preprint. CoRR, abs/2408.00262.Google Scholar
Hansen, H. H. Monotonic modal logic, Master’s thesis, Universiteit van Amsterdam, 2003 (ILLC technical report: PP-2003-24).Google Scholar
Indrzejczak, A. (2005). Sequent calculi for monotonic modal logics. Bulletin of the Section of Logic, 34(3), 151164.Google Scholar
Indrzejczak, A. (2021). Sequents and Trees. Cham: Birkhäuser.Google Scholar
Johansson, I. (1937). Der Minimalkalkül, ein reduzierter intuitionistischer Formalismus. Compositio Mathematica, 4, 119136.Google Scholar
Kamide, N. (2002). Kripke semantics for modal substructural logics. Journal of Logic, Language and Information, 11(4), 453470.Google Scholar
Kojima, K. (2012). Relational and neighborhood semantics for intuitionistic modal logic. Reports on Mathematical Logic, 47, 87113.Google Scholar
Kracht, M., & Wolter, F. (1999). Normal monomodal logics can simulate all others. The Journal of Symbolic Logic, 64(1), 99138.Google Scholar
Kripke, S. A (1965). Semantical Analysis of Intuitionistic Logic I, Studies in Logic and the Foundations of Mathematics, 40, Amsterdam: Elsevier, pp. 92130.Google Scholar
Kuznets, R., Marin, S., & Straßburger, L. (2021). Justification logic for constructive modal logic. Journal of Applied Logics, 8(8), 23132332.Google Scholar
Lavendhomme, R., & Lucas, T. (2000). Sequent calculi and decision procedures for weak modal systems. Studia Logica, 66(1), 121145.Google Scholar
Lellmann, B. (2013). Sequent Calculi with Context Restrictions and Applications to Conditional Logic. PhD thesis, Imperial College London.Google Scholar
Lellmann, B. (2016). Hypersequent rules with restricted contexts for propositional modal logics. Theoretical Computer Science, 656, 76105.Google Scholar
Lellmann, B., & Pimentel, E. (2019). Modularisation of sequent calculi for normal and non-normal modalities. ACM Transactions on Computational Logic, 20(2), 7.1–7.46.Google Scholar
Mares, E. D. (1993). Classically complete modal relevant logics. Mathematical Logic Quarterly, 39, 165177.Google Scholar
Marion, M., & Sadrzadeh, M. (2004). Reasoning about knowledge in linear logic: Modalities and complexity. In Rahman, S., Symons, J., Gabbay, D. M., & Van Bendegem, J. P., editors. Logic, Epistemology, and the Unity of Science, volume 1 of Logic, Epistemology, and the Unity of Science, Dordrecht: Springer, pp. 327350.Google Scholar
Mendler, M., & de Paiva, V. (2005). Constructive CK for contexts. In Serafini, L. and Bouquet, P., editors. Proceedings of CRR’05. CEUR-WR.org/Vol-136.Google Scholar
Mendler, M., & Scheele, S. (2010). Towards constructive DL for abstraction and refinement. Journal of Automated Reasoning, 44(3), 207243.Google Scholar
Mendler, M., & Scheele, S. (2011). Cut-free Gentzen calculus for multimodal CK. Information & Computation, 209(12), 14651490.Google Scholar
Mendler, M., & Scheele, S. (2014). On the computational interpretation of CKn for contextual information processing. Fundamenta Informaticae, 130(1), 125162.Google Scholar
Negri, S. (2005). Proof analysis in modal logic. Journal of Philosophical Logic, 34(5–6), 507544.Google Scholar
Orlandelli, E. (2020). Sequent calculi and interpolation for non-normal modal and deontic logics. Logic and Logical Philosophy, 30(1), 139183.Google Scholar
Pacuit, E. (2017). Neighborhood Semantics for Modal Logic. Cham: Springer.Google Scholar
de Paiva, V., & Ritter, E. (2011). Basic constructive modality. In Beziau, J.-Y., & Coniglio, M. E., editors. Logic without Frontiers. Festschrift for Walter Alexandre Carnielli on the Occasion of his 60th Birthday. College Publications, pp. 411428.Google Scholar
Plotkin, G. D., & Stirling, C. (1986). A framework for intuitionistic modal logics. In Halpern, J. Y., editor. Proceedings of the 1st Conference on Theoretical Aspects of Reasoning about Knowledge, Monterey, CA, USA, March 1986. Burlington, Massachusetts: Morgan Kaufmann, pp. 399406.Google Scholar
Poggiolesi, F. (2008). A cut-free simple sequent calculus for modal logic S5. Review of Symbolic Logic, 1(1), 315.Google Scholar
Porello, D., & Troquard, N. (2015). Non-normal modalities in variants of linear logic. Journal of Applied Non-Classical Logics, 25(3), 229255.Google Scholar
Restall, G. (2007). Proofnets for S5: Sequents and circuits for modal logic. In Dimitracopoulos, C., Newelski, L., Normann, D., and Steel, J. R., editors. Logic Colloquium 2005, Vol. 28. Cambridge: Cambridge University Press, pp. 151172.Google Scholar
Sedlár, I. (2016). Epistemic extensions of modal distributive substructural logics. Journal of Logic and Computation, 26(6), 17871813.Google Scholar
Segerberg, K. (1968). Propositional logics related to Heyting’s and Johansson’s. Theoria, 34(1), 2661.Google Scholar
Seki, T. (2003). General frames for relevant modal logics. Notre Dame Journal of Formal Logic, 44(2), 93109.Google Scholar
Seki, T. (2003). A Sahlqvist theorem for relevant modal logics. Studia Logica, 73(3), 383411.Google Scholar
Servi, G. F. (1980). Semantics for a class of intuitionistic modal calculi. In Luisa, M., and Chiara, D., editors. Italian Studies in the Philosophy of Science. Dordrecht: Springer, pp. 5972.Google Scholar
Servi, G. F. (1984). Axiomatizations for some intuitionistic modal logics. Rendiconti del Seminario Matematico—PoliTO, 42(3), 179194.Google Scholar
Simpson, A. K. (1994). The Proof Theory and Semantics of Intuitionistic Modal Logic. PhD thesis, University of Edinburgh.Google Scholar
Straßburger, L. (2013). Cut elimination in nested sequents for intuitionistic modal logics. In Pfenning, F., editor. Foundations of Software Science and Computation Structures - 16th International Conference, FOSSACS 2013, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2013, Rome, Italy, March 16-24, 2013. Proceedings, volume 7794 of Lecture Notes in Computer Science, Berlin, Heidelberg: Springer, pp. 209224.Google Scholar
Troelstra, A. S., & Schwichtenberg, H. (2000). Basic Proof Theory (second edition), volume 43 of Cambridge Tracts in Theoretical Computer Science, Cambridge: Cambridge University Press.Google Scholar
Viganò, L. (2000). Labelled Non-Classical Logics. New York: Springer.Google Scholar
Wansing, H. (1995). Strong cut-elimination for constant domain first-order S5. Logic Journal of the IGPL, 3(5), 797810.Google Scholar
Wansing, H. (2002). Sequent systems for modal logics. In Guenther, F., & Gabbay, D., editors. Handbook of Philosophical Logic, Vol. 8, Dordrecht: Springer, pp. 61145.Google Scholar
Wijesekera, D. (1990). Constructive modal logics I. Annals of Pure and Applied Logic, 50(3), 271301.Google Scholar
Wijesekera, D., & Nerode, A. (2005). Tableaux for constructive concurrent dynamic logic. Annals of Pure and Applied Logic, 135(1–3), 172.Google Scholar
Wolter, F., & Zakharyaschev, M. (1999). Intuitionistic modal logics as fragments of classical bimodal logics. In Orlowska, E., editor. Logic at Work. Heidelberg: Physica-Verlag, pp. 168186.Google Scholar