No CrossRef data available.
Published online by Cambridge University Press: 18 June 2025
Due to the complexity of urban and rural drainage systems, although many types of robots have been designed for this purpose, the mainstream pipeline inspection robots are currently dominated by four-wheeled designs. In this study, the shortcomings of four-wheeled pipeline robots were analyzed, including poor passability, difficulties in spatial positioning and orientation, and the limited effectiveness of conventional two-degree-of-freedom observation systems. Based on these issues, the spatial pose mathematical model of the four-wheeled robot inside the pipeline was investigated, along with the spatial geometric constraints and speed characteristics during cornering. This study was intended to reveal the spatial geometric parameter limitations and the kinematic characteristics of the four-wheeled pipeline robot under these constraints, providing corresponding recommendations. To address the issue of the outdated two-degree-of-freedom vision component, a three-degree-of-freedom visual component was designed, and forward kinematics analysis was conducted using Standard-Denavit-Hartenberg parametric modeling, revealing its motion speed and characteristics. Based on this visual component, a new concept of in-pipeline robot vision was proposed, providing new references for the design of four-wheeled pipeline robots.