No CrossRef data available.
Published online by Cambridge University Press: 21 May 2025
This paper introduces a distributed online learning coverage control algorithm based on sparse Gaussian process regression for addressing the problem of multi-robot area coverage and source localization in unknown environments. Considering the limitations of traditional Gaussian process regression in handling large datasets, this study employs multiple robots to explore the task area to gather environmental information and approximate the posterior distribution of the model using variational free energy methods, which serves as the input for the centroid Voronoi tessellation algorithm. Additionally, taking into consideration the localization errors, and the impact of obstacles, buffer factors and centroid Voronoi tessellation algorithms with separating hyperplanes are introduced for dynamic robot task area planning, ultimately achieving autonomous online decision-making and optimal coverage. Simulation results demonstrate that the proposed algorithm ensures the safety of multi-robot formations, exhibits higher iteration speed, and improves source localization accuracy, highlighting the effectiveness of model enhancements.