Hostname: page-component-5b777bbd6c-cp4x8 Total loading time: 0 Render date: 2025-06-20T02:21:28.505Z Has data issue: false hasContentIssue false

Compound Koopman data-driven control for an inchworm robot: validation through virtual experiments

Published online by Cambridge University Press:  19 May 2025

Mehran Rahmani*
Affiliation:
School of Manufacturing Systems and Networks, Ira Fulton School of Engineering, Arizona State University, Mesa, AZ, 85212, USA
Jay B. Menon
Affiliation:
School of Manufacturing Systems and Networks, Ira Fulton School of Engineering, Arizona State University, Mesa, AZ, 85212, USA
Apoorva Rahul Uplap
Affiliation:
School of Manufacturing Systems and Networks, Ira Fulton School of Engineering, Arizona State University, Mesa, AZ, 85212, USA
Sangram Redkar
Affiliation:
School of Manufacturing Systems and Networks, Ira Fulton School of Engineering, Arizona State University, Mesa, AZ, 85212, USA
*
Corresponding author: Mehran Rahmani; Email: mrahma61@asu.edu

Abstract

Locomotion control of inchworm robots presents significant challenges due to their highly nonlinear dynamics and complex interactions with the environment. Traditional control methods often struggle with achieving precise tracking and adaptive performance in dynamic conditions. To address these limitations, this article proposes a novel data-driven compound control system that integrates fractional proportional-integral derivative (FPID) control with Koopman operator theory. Unlike conventional approaches, which rely on direct nonlinear control or simplified linear approximations, our method leverages data-driven modeling to transform the nonlinear dynamics into a linear representation, making control design more systematic and scalable. A deep neural network is trained to identify the Koopman operator, enabling an FPID controller to operate within this transformed space for improved tracking accuracy and robustness. The proposed framework is validated using NVIDIA Isaac SIM simulation software, demonstrating superior locomotion efficiency and tracking performance compared to existing control strategies. This study advances the control of bio-inspired robots by bridging fractional-order control with data-driven Koopman-based modeling, addressing the fundamental challenge of achieving high-precision locomotion in complex environments.

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Liu, Y., Qin, Y., Yuan, D. and Yuan, W., “Friction modulation through normal vibrations in an inchworm-inspired robot,” Tribology Int., 109837 (2024).CrossRefGoogle Scholar
Tian, Y., Yao, Y. A., Ding, W. and Xun, Z., “Design and locomotion analysis of a novel deformable mobile robot with worm-like, self-crossing and rolling motion,” Robotica 34(9), 19611978 (2016).CrossRefGoogle Scholar
Douadi, L., Spinello, D., Gueaieb, W. and Sarfraz, H., “Planar kinematics analysis of a snake-like robot,” Robotica 32(5), 659675 (2014).CrossRefGoogle Scholar
Peng, Y., Nabae, H., Funabora, Y. and Suzumori, K., “Controlling a peristaltic robot inspired by inchworms,” Biomimetic Intell. Rob. 4(1), 100146 (2024).CrossRefGoogle Scholar
Li, M., Wang, G., Wang, J., Zheng, Y. and Jiao, X., “Development of an inchworm-like soft pipe robot for detection,” Int. J. Mech. Sci. 253, 108392 (2023).CrossRefGoogle Scholar
Sun, J., Bauman, L., Yu, L. and Zhao, B., “Gecko-and-inchworm-inspired untethered soft robot for climbing on walls and ceilings,” Cell Reports Phys. Sci. 4(2), 101241 (2023).CrossRefGoogle Scholar
Lin, T. H., Putranto, A., Chen, P. H., Teng, Y. Z. and Chen, L., “High-mobility inchworm climbing robot for steel bridge inspection,” Autom. Constr. 152, 104905 (2023).CrossRefGoogle Scholar
Thomas, S., Germano, P., Martinez, T. and Perriard, Y., “An untethered mechanically-intelligent inchworm robot powered by a shape memory alloy oscillator,” Sens. Actuators A: Phys. 332, 113115 (2021).CrossRefGoogle Scholar
Ueno, S., Takemura, K., Yokota, S. and Edamura, K., “Micro inchworm robot using electro-conjugate fluid,” Sens. Actuators A: Phys. 216, 3642 (2014).CrossRefGoogle Scholar
Rahmani, M., Ghanbari, A. and Ettefagh, M. M., “Hybrid neural network fraction integral terminal sliding mode control of an inchworm robot manipulator,” Mech. Syst. Signal Process. 80, 117136 (2016).CrossRefGoogle Scholar
Cao, J., Liang, W., Wang, Y., Lee, H. P., Zhu, J. and Ren, Q., “Control of a soft inchworm robot with environment adaptation,” IEEE Trans. Ind. Electron. 67(5), 38093818 (2019).CrossRefGoogle Scholar
Zheng, Z., Kumar, P., Chen, Y., Cheng, H., Wagner, S., Chen, M. and Sturm, J. C., “Piezoelectric soft robot inchworm motion by tuning ground friction through robot shape: Quasi-static modeling and experimental validation,” IEEE Trans. Rob. 40, 23392356 (2024).CrossRefGoogle Scholar
Yang, Y., Li, D. and Shen, Y., “Inchworm-inspired soft robot with light-actuated locomotion,” IEEE Rob. Autom. Lett. 4(2), 16471652 (2019).CrossRefGoogle Scholar
Di, Y., Zhang, Y., Wen, Y., Yao, H., Zhou, Z., Ren, Z. and Shao, J., “Inchworm-inspired soft robot with controllable locomotion based on self-sensing of deformation,” IEEE Rob. Autom. Lett. 9(5), 43454352 (2024).CrossRefGoogle Scholar
Dumlu, A. and Erenturk, K., “Trajectory tracking control for a 3-dof parallel manipulator using fractional-order PIλDμ control,” IEEE Trans. Ind. Electron. 61(7), 34173426 (2013).CrossRefGoogle Scholar
Mondal, R. and Dey, J., “Performance analysis and implementation of fractional order 2-DOF control on cart-inverted pendulum system,” IEEE Trans. Ind. Appl. 56(6), 70557066 (2020).CrossRefGoogle Scholar
Ni, X., Wei, Y., Zhou, S. and Tao, M., “Multi-objective network resource allocation method based on fractional PID control,” Signal Process. 227, 109717 (2025).CrossRefGoogle Scholar
Bruder, D., Fu, X., Gillespie, R. B., Remy, C. D. and Vasudevan, R., “Data-driven control of soft robots using Koopman operator theory,” IEEE Trans. Rob. 37(3), 948961 (2020).CrossRefGoogle Scholar
Švec, M., Ileš, Š. and Matuško, J., “Predictive direct yaw moment control based on the koopman operator,” IEEE Trans. Control Syst. Technol. 31(6), 29122919 (2023).CrossRefGoogle Scholar
Shi, H. and Meng, M. Q. H., “Deep Koopman operator with control for nonlinear systems,” IEEE Rob. Autom. Lett. 7(3), 77007707 (2022).CrossRefGoogle Scholar
Korda, M. and Mezić, I., “Optimal construction of Koopman eigenfunctions for prediction and control,” IEEE Trans. Autom. Control 65(12), 51145129 (2020).CrossRefGoogle Scholar
Ramadan, M. S. and Anitescu, M., “Extended Kalman filter-Koopman operator for tractable stochastic optimal control,” IEEE Control Syst. Lett. 8, 16431648 (2024).CrossRefGoogle Scholar
Wang, H., Liang, W., Liang, B., Ren, H., Du, Z. and Wu, Y., “Robust position control of a continuum manipulator based on selective approach and Koopman operator,” IEEE Trans. Ind. Electron. 70(12), 1252212532 (2023).CrossRefGoogle Scholar
Mamakoukas, G., Castano, M. L., Tan, X. and Murphey, T. D., “Derivative-based Koopman operators for real-time control of robotic systems,” IEEE Trans. Rob. 37(6), 21732192 (2021).CrossRefGoogle Scholar
Li, Z., Han, M., Vo, D. N. and Yin, X., “Machine learning-based input-augmented Koopman modeling and predictive control of nonlinear processes,” Comput. Chem. Eng. 191, 108854 (2024).CrossRefGoogle Scholar
Iman, S. and Jahed-Motlagh, M. R., “Data-driven predictor of control-affine nonlinear dynamics: Finite discrete-time bilinear approximation of koopman operator,” Appl. Math. Comput. 487, 129068 (2025).Google Scholar
Rahmani, M. and Redkar, S., “Deep neural data-driven Koopman fractional control of a worm robot,” Expert Syst. Appl. 256, 124916 (2024).CrossRefGoogle Scholar
Mao, R., Meng, T., Wang, K., Lei, J. and Wang, W., “Deep Koopman-operator-based model predictive control for free-floating space robots with disturbance observer,” Aerospace Sci. Technol. 154, 109515 (2024).CrossRefGoogle Scholar
Mallen, A. T., Lange, H. and Kutz, J. N., “Deep probabilistic Koopman: Long-term time-series forecasting under periodic uncertainties,” Int. J. Forecasting 40(3), 859868 (2024).CrossRefGoogle Scholar
Peng, Q., Chen, G., Guo, J. and Guo, Z., “Attitude/orbit engine compound control for hypersonic target interceptor with discrete-time inputs and state constraints,” IEEE Trans. Aerospace Electron. Syst. 60(4), 49394951 (2024).CrossRefGoogle Scholar
Liu, Y., Wang, H., Liu, B., Chen, L., Wang, Y. and Chen, H., “Learning-based compound docking control for UAV aerial recovery: Methodology and implementation,” IEEE/ASME Trans. Mechatron. 28(3), 17061717 (2022).CrossRefGoogle Scholar
Zhou, X., Wang, W. and Shi, Y., “Neural network/PID adaptive compound control based on RBFNN identification modeling for an aerial inertially stabilized platform,” IEEE Trans. Ind. Electron. 71(12), 1651416522 (2024).CrossRefGoogle Scholar
Bounemeur, A., chemachema, M., Zahaf, A. and Bououden, S., “Adaptive Fuzzy Fault-Tolerant Control Using Nussbaum Gain for a Class of SISO Nonlinear Systems with Unknown Directions,” Proceedings of the 4th International Conference on Electrical Engineering and Control Applications: ICEECA 2019, 17–19 December 2019, Constantine, Algeria (Springer Singapore, 2019) pp. 493510.Google Scholar
Bounemeur, A. and Chemachema, M., “Adaptive fuzzy fault-tolerant control using Nussbaum-type function with state-dependent actuator failures,” Neural Comput. Appl. 33(1), 191208 (2021).CrossRefGoogle Scholar
Bey, O. and Chemachema, M., “Finite-time event-triggered output-feedback adaptive decentralized echo-state network fault-tolerant control for interconnected pure-feedback nonlinear systems with input saturation and external disturbances: A fuzzy control-error approach,” Inf. Sci. 669, 120557 (2024).CrossRefGoogle Scholar
Bounemeur, A. and Chemachema, M., “Finite-time output-feedback fault tolerant adaptive fuzzy control framework for a class of MIMO saturated nonlinear systems,” Int. J. Syst. Sci. 56(4), 733752 (2025).CrossRefGoogle Scholar
Liu, Z., Dizqah, A. M., Herreros, J. M., Schaub, J. and Haas, O. C., “A hierarchical economic model predictive controller that exploits look-ahead information of roads to boost engine performance,” IEEE Trans. Control Syst. Technol. 31(6), 26322643 (2023).CrossRefGoogle Scholar
Ma, Y., Qin, T. and Li, Y., “Nonlinear extended state observer based super-twisting terminal sliding mode synchronous control for parallel drive systems,” IEEE/ASME Trans. Mechatron. 28(6), 30873098 (2023).CrossRefGoogle Scholar
Baltes, J., Christmann, G. and Saeedvand, S., “A deep reinforcement learning algorithm to control a two-wheeled scooter with a humanoid robot,” Eng. Appl. Artif. Intell. 126, 106941 (2023).CrossRefGoogle Scholar
Sekkat, H., Moutik, O., Kari, B. E., Chaibi, Y., Tchakoucht, T. A. and Alaoui, A. E. H., “Beyond simulation: Unlocking the frontiers of humanoid robot capability and intelligence with Pepper’s open-source digital twin,” Heliyon 10(14), e34456 (2024).CrossRefGoogle ScholarPubMed
Rojas, M., Hermosilla, G., Yunge, D. and Farias, G., “An easy to use deep reinforcement learning library for AI mobile robots in Isaac sim,” Appl. Sci. 12(17), 8429 (2022).CrossRefGoogle Scholar
Ghanbari, A. and Noorani, S. M. R. S., “Optimal trajectory planning for design of a crawling gait in a robot using genetic algorithm,” Int. J. Adv. Rob. Syst. 8(1), 6 (2011).CrossRefGoogle Scholar
Islam, M. R., Rahmani, M. and Rahman, M. H., “A novel exoskeleton with fractional sliding mode control for upper limb rehabilitation,” Robotica 38(11), 20992120 (2020).CrossRefGoogle Scholar