Hostname: page-component-7857688df4-qjfxt Total loading time: 0 Render date: 2025-11-18T21:42:19.519Z Has data issue: false hasContentIssue false

Fluid regulation strategies and valve innovations in soft robots: a review

Published online by Cambridge University Press:  01 October 2025

Xinzhou Wang
Affiliation:
Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, Tianjin University, Tianjin, China
Kaiwen Zheng
Affiliation:
Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, Tianjin University, Tianjin, China
Jiabiao Li
Affiliation:
Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, Tianjin University, Tianjin, China
Haoteng Wang
Affiliation:
Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, Tianjin University, Tianjin, China
Rencheng Zheng
Affiliation:
Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, Tianjin University, Tianjin, China
Jianbin Liu*
Affiliation:
Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, Tianjin University, Tianjin, China
*
Corresponding author: Jianbin Liu; Email: jianbin_liu@tju.edu.cn

Abstract

Soft robots have emerged as a transformative technology with widespread applications across diverse fields. Among various actuation mechanisms, fluid-based actuation remains predominant in soft robotics, where precise fluid regulation is fundamental to system performance. This review aims to provide a comprehensive reference for researchers interested in fluid regulation strategies in soft robots by outlining the current state of research in this field and discussing innovations in valve designs to inspire future advancements. The fluid regulation strategies discussed in this review are systematically categorized into three main approaches: valve-based, smart fluid-based, and pressure source-based strategies, with each type systematically classified and discussed in detail. Building upon this analysis, a Task-to-Fluidic Regulation System mapping framework is proposed, integrating the V-model principles from systems engineering to provide a structured, requirements-driven methodology that links task objectives to concrete regulation system configurations through sequential design and multi-level verification. Finally, the latest advancements in fluid regulation methods in soft robotics are summarized, along with emerging trends and directions for future development.

Information

Type
Review Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Rus, D. and Tolley, M. T., “Design, fabrication and control of soft robots,” Nature 521 467475 (2015).CrossRefGoogle ScholarPubMed
Cheney, N., Bongard, J. and Lipson, H., “Evolving Soft Robots in Tight Spaces,” Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation GECCO’15 (Association for Computing Machinery, New York, NY, USA, 2015) pp. 935942.CrossRefGoogle Scholar
Yang, Y., Wu, Y., Li, C., Yang, X. and Chen, W., “Flexible actuators for soft robotics,” Adv. Intell. Syst. 2, 1900077 (2020).CrossRefGoogle Scholar
Yang, Y., Li, Y. and Chen, Y., “Principles and methods for stiffness modulation in soft robot design and development,” Bio-des. Manuf. 1, 1425 (2018).CrossRefGoogle Scholar
Cianchetti, M., Laschi, C., Menciassi, A. and Dario, P., “Biomedical applications of soft robotics,” Nature Rev. Mater. 3, 143153 (2018).CrossRefGoogle Scholar
Coyle, S., Majidi, C., LeDuc, P. and Hsia, K. J. Bio-inspired soft robotics: Material selection, actuation and design,” Extreme Mech. Lett. 22, 5159 (2018).CrossRefGoogle Scholar
Rieffel, J. and Mouret, J.-B., “Adaptive and resilient soft tensegrity robots,”Soft Rob. 5, 318329 (2018).CrossRefGoogle ScholarPubMed
Ohta, P., Valle, L., King, J., Low, K., Yi, J., Atkeson, C. G. and Park, Y.-L., “Design of a lightweight soft robotic arm using pneumatic artificial muscles and inflatable sleeves,” Soft Rob. 5, 204215 (2018).CrossRefGoogle ScholarPubMed
Chen, S., Pang, Y., Cao, Y., Tan, X. and Cao, C., “Soft robotic manipulation system capable of stiffness variation and dexterous operation for safe human–machine interactions,” Adv. Mater. Technol. 6, 2100084 (2021).CrossRefGoogle Scholar
Kim, T., Yoon, S. J. and Park, Y.-L., “Soft inflatable sensing modules for safe and interactive robots,” IEEE Rob. Autom. Lett. 3, 32163223 (2018).CrossRefGoogle Scholar
Peng, Z. and Huang, J., “Soft rehabilitation and nursing-care robots: A review and future outlook,” Appl. Sci. 9, 3102 (2019).CrossRefGoogle Scholar
Liu, Q., Zuo, J., Zhu, C. and Xie, S. Q., “Design and control of soft rehabilitation robots actuated by pneumatic muscles: State of the art,” Future Gener. Comput. Syst. 113, 620634 (2020).CrossRefGoogle Scholar
Wang, L., Peng, G., Yao, W., Biggar, S., Hu, C., Yin, X. and Fan, Y., "Soft Robotics for Hand Rehabilitation," In: Intelligent Biomechatronics in Neurorehabilitation (Elsevier, 2020) pp. 167176.CrossRefGoogle Scholar
Wang, X., Zhang, Q., Shen, D. and Chen, J., “A Novel Rescue Robot: Hybrid Soft and Rigid Structures for Narrow Space Searching,” 2019 IEEE International Conference on Robotics and Biomimetics (ROBIO) (IEEE, 2019) pp. 22072213.CrossRefGoogle Scholar
Florez, J. M., Shih, B., Bai, Y. and Paik, J. K., “Soft Pneumatic Actuators for Legged Locomotion,” 2014 IEEE International Conference on Robotics and Biomimetics (ROBIO 2014) (IEEE, 2014) pp. 2734.CrossRefGoogle Scholar
Samm, R. T., Durairajah, V. and Gobee, S., “Developing a fully soft robotic snake for search and rescue,” Solid State Technol. 63(1s), 13141329 (2020).Google Scholar
El-Atab, N., Mishra, R. B., Al-Modaf, F., Joharji, L., Alsharif, A. A., Alamoudi, H., Diaz, M., Qaiser, N. and Hussain, M. M., “Soft actuators for soft robotic applications: A review,” Adv. Intell. Syst. 2, 2000128 (2020).CrossRefGoogle Scholar
Moghadam, A. A. A., Kouzani, A., Torabi, K., Kaynak, A. and Shahinpoor, M., “Development of a novel soft parallel robot equipped with polymeric artificial muscles,” Smart Mater. Struct. 24, 035017 (2015).CrossRefGoogle Scholar
Anon, “Design, manufacturing and applications of small-scale magnetic soft robots,” Extreme Mech. Lett. 44, 101268 (2021).CrossRefGoogle Scholar
Hsiao, J.-H., Chang, J. and Cheng, C.-M., “Soft medical robotics: Clinical and biomedical applications, challenges and future directions,” Adv. Rob. 33, 10991111 (2019).CrossRefGoogle Scholar
Anon, Biomedical applications of soft robotics - Consensus.Google Scholar
Gao, X., “Bionic soft robot review,” Theoret. Nat. Sci. 2, 135141 (2023).CrossRefGoogle Scholar
Li, W., Hu, D. and Yang, L., “Actuation mechanisms and applications for soft robots: A comprehensive review,” Appl. Sci. 13(16), 9255 (2023).CrossRefGoogle Scholar
Polygerinos, P., Correll, N., Morin, S. A., Mosadegh, B., Onal, C. D., Petersen, K., Cianchetti, M., Tolley, M. T. and Shepherd, R. F., “Soft robotics: Review of fluid-driven intrinsically soft devices; Manufacturing, sensing, control, and applications in human-robot interaction,” Adv. Eng. Mater. 19, 1700016 (2017).CrossRefGoogle Scholar
McDonald, K. and Ranzani, T., “Hardware methods for onboard control of fluidically actuated soft robots,” Front. Rob. AI 8, 720702 (2021).CrossRefGoogle ScholarPubMed
Sun, L., Chen, Z., Bian, F. and Zhao, Y., “Bioinspired soft robotic caterpillar with cardiomyocyte drivers,” Adv. Funct. Mater. 30, 1907820 (2020).CrossRefGoogle Scholar
Li, Z., Wang, Y., Foo, C. C., Godaba, H., Zhu, J. and Yap, C. H., “The mechanism for large-volume fluid pumping via reversible snap-through of dielectric elastomer,” J. Appl. Phys. 122, 084503 (2017).CrossRefGoogle Scholar
Xu, S., Nunez, C. M., Souri, M. and Wood, R., “A compact DEA-based soft peristaltic pump for power and control of fluidic robots,” Sci. Rob. 8 (2023).Google Scholar
Cai, S., Wang, P., Tian, L., Xu, F. and Zhang, L., “Design and Experimental Study of Compliant Joints of Robot Based on Magneto-Rheological Fluid,” 2017 IEEE International Conference on Robotics and Biomimetics (ROBIO) (IEEE, 2017) pp. 19911996.CrossRefGoogle Scholar
Xavier, M. S., Fleming, A. and Yong, Y., “Design and control of pneumatic systems for soft robotics: A simulation approach,” IEEE Rob. Autom. Lett. 6, 58005807 (2021).CrossRefGoogle Scholar
Han, F., Li, Q., Xiong, H., He, C., Zhao, H. and Chen, Z., “Soft valves: A review of structures materials, and modeling,” Adv. Intell. Syst. 6, 2300764 (2024).CrossRefGoogle Scholar
Nakamura, T., “Fluid-driven soft actuators for soft robots,” J. Rob. Mechatron. 36, 251259 (2024).CrossRefGoogle Scholar
Xu, S., Zhang, S., Lei, R., Liu, Y., Bu, W., Wei, X. and Zhang, Z., “Fluid-driven and smart material-driven research for soft body robots,” Prog. Nat. Sci. Mater. Int. 33(4), 371385 (2023).CrossRefGoogle Scholar
Tang, X., Li, H., Ma, T., Yang, Y., Luo, J., Wang, H. and Jiang, P., “A review of soft actuator motion: Actuation, design manufacturing and applications,” Actuators 11(11), 331 (2022).CrossRefGoogle Scholar
Luo, K., Rothemund, P., Whitesides, G. M. and Suo, Z., “Soft kink valves,” J. Mech. Phys. Solids 131, 230239 (2019).CrossRefGoogle Scholar
Xu, K. and Pérez-Arancibia, N. O., “Electronics-free logic circuits for localized feedback control of multi-actuator soft robots,” IEEE Rob. Autom. Lett. 5, 39903997 (2020).CrossRefGoogle Scholar
Decker, C. J., Jiang, H. J., Nemitz, M. P., Root, S. E., Rajappan, A., Alvarez, J. T., Tracz, J., Wille, L., Preston, D. J. and Whitesides, G. M., “Programmable soft valves for digital and analog control,” Proc. Natl. Acad. Sci. U.S.A 119, e2205922119 (2022).CrossRefGoogle ScholarPubMed
Rothemund, P., Ainla, A., Belding, L., Preston, D. J., Kurihara, S., Suo, Z. and Whitesides, G. M., “A soft, bistable valve for autonomous control of soft actuators,” Sci. Rob. 3, eaar7986 (2018).CrossRefGoogle ScholarPubMed
Nabae, H. and Kitamura, E., “Self-excited valve using a flat ring tube: Application to robotics,” Front. Rob. AI 9, 1008559 (2022).CrossRefGoogle ScholarPubMed
Wang, Y., Liu, Y., Luo, K., Tian, Q. and Hu, H., “Twisting tubes as soft robotic valves,” Int. J. Mech. Sci. 260, 108655 (2023).CrossRefGoogle Scholar
Choe, J. K., Kim, J., Song, H., Bae, J. and Kim, J., “A soft, self-sensing tensile valve for perceptive soft robots,” Nat. Commun. 14, 3942 (2023).CrossRefGoogle ScholarPubMed
Zhao, F., Wang, Y., Liu, S., Jin, M., Ren, L., Ren, L. and Liu, C., “Rapid, energy-saving bioinspired soft switching valve embedded in snapping membrane actuator,” J. Bionic Eng. 20, 225236 (2023).CrossRefGoogle Scholar
Gaber, M., Branson, D., Ashcroft, I. and Goher, K., “3D-Printed Modified Pinch Valve for Controlling Pneumatic Artificial Muscles,” 2024 9th International Conference on Automation, Control and Robotics Engineering (CACRE) 2024 9th International Conference on Automation, Control and Robotics Engineering (CACRE) (IEEE, Jeju Island, Republic of Korea, 2024) pp. 435439.Google Scholar
Moran, A. M., Vo, V. T., McDonald, K. J., Sultania, P., Langenbrunner, E., Chong, J. H. V., Naik, A., Kinnicutt, L., Li, J. and Ranzani, T., “An electropermanent magnet valve for the onboard control of multi-degree of freedom pneumatic soft robots,” Commun. Eng. 3, 117 (2024).CrossRefGoogle ScholarPubMed
Xu, S., Chen, Y., Hyun, N. P., Becker, K. P. and Wood, R. J., “A dynamic electrically driven soft valve for control of soft hydraulic actuators,” Proc. Natl. Acad. Sci. U.S.A 118, e2103198118 (2021).CrossRefGoogle ScholarPubMed
Poccard-Saudart, J., Xu, S., Teeple, C. B., Hyun, N.-S. P., Becker, K. P. and Wood, R. J., “Controlling soft fluidic actuators using soft DEA-based valves,” IEEE Rob. Autom. Lett. 7, 88378844 (2022).CrossRefGoogle Scholar
Miyaki, Y. and Tsukagoshi, H., “Self-excited vibration valve that induces traveling waves in pneumatic soft mobile robots,” IEEE Rob. Autom. Lett. 5, 41334139 (2020).CrossRefGoogle Scholar
Napp, N., Araki, B., Tolley, M. T., Nagpal, R. and Wood, R. J., “Simple Passive Valves for Addressable Pneumatic Actuation,” 2014 IEEE International Conference on Robotics and Automation (ICRA) (IEEE, Hong Kong, China, 2014) pp. 14401445.CrossRefGoogle Scholar
Gilbertson, M. D., McDonald, G., Korinek, G., Van de Ven, J. D. and Kowalewski, T. M., “Soft passive valves for serial actuation in a soft hydraulic robotic catheter,” J. Med. Dev. 10, 030931 (2016).CrossRefGoogle Scholar
Park, T., Choi, E., Kim, C.-S., Park, J-O. and Hong, A., “A multi-segmented soft finger using snap-through instability of a soft valve with a slit,” IEEE Rob. Autom. Lett. 7, 69906997 (2022).CrossRefGoogle Scholar
van Laake, L. C., de Vries, J., Kani, S. M. and Overvelde, J. T., “A fluidic relaxation oscillator for reprogrammable sequential actuation in soft robots,” Matter 5, 28982917 (2022).CrossRefGoogle Scholar
Wu, J., Lin, Y. and Sun, J., “Anisotropic volume change of poly(N-isopropylacrylamide)-based hydrogels with an aligned dual-network microstructure,” J. Mater. Chem. 22, 1744917451 (2012).CrossRefGoogle Scholar
Yu, Q., Bauer, J. M., Moore, J. S. and Beebe, D. J., “Responsive biomimetic hydrogel valve for microfluidics,” Appl. Phys. Lett. 78, 25892591 (2001).CrossRefGoogle Scholar
Bosio, C., Zrinscak, D., Laschi, C. and Cianchetti, M., “Soft mini fuse valve for resilient fluidically-actuated robots,” IEEE Rob. Autom. Lett. 8, 27162723 (2023).CrossRefGoogle Scholar
Wang, S., He, L. and Maiolino, P., “Design and characterization of a 3d-printed pneumatically-driven bistable valve with tunable characteristics,” IEEE Rob. Autom. Lett. 7, 112119 (2021).CrossRefGoogle Scholar
Wang, S., He, L. and Maiolino, P., “A modular approach to design multi-channel bistable valves for integrated pneumatically-driven soft robots via 3D-printing,” IEEE Rob. Autom. Lett. 7, 34123418 (2022).CrossRefGoogle Scholar
Marchese, A. D., Onal, C. D. and Rus, D., “Soft Robot Actuators Using Energy-Efficient Valves Controlled by Electropermanent Magnets,” 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2011) (IEEE, San Francisco, CA, 2011) pp. 756761.Google Scholar
Shen, D., Zhang, Q., Wang, C., Wang, X. and Tian, M., “Design and analysis of a snake-inspired crawling robot driven by alterable angle scales,” IEEE Rob. Autom. Lett. 6, 37443751 (2021).CrossRefGoogle Scholar
Chen, C., Tang, W., Hu, Y., Lin, Y. and Zou, J., “Fiber-reinforced soft bending actuator control utilizing on/off valves,” IEEE Rob. Autom. Lett. 5, 67326739 (2020).CrossRefGoogle Scholar
Kobayashi, T., Akagi, T., Dohta, S., Cho, F., Shinohara, T. and Yokota, M., “Slide-gate type multi-port switching valve,” J. Rob. Mechatron. 35, 633640 (2023).CrossRefGoogle Scholar
Zhu, J., Han, P., Qi, C., Gong, G., Yang, H., Shinshi, T. and Han, D., Sens. Actuators A: Phys. 377, 115699 (2024).Google Scholar
Takayama, T. and Sumi, Y., “Self-excited air flow passage changing device for periodic pressurization of soft robot,” Robomech. J. 8, 20 (2021).CrossRefGoogle Scholar
Low, K., Berg, D. R. and Li, P. Y., “A novel 3D ring-based flapper valve for soft robotic applications,” Robotics 11, 2 (2022).CrossRefGoogle Scholar
Ranzani, T., Russo, S., Bartlett, N. W., Wehner, M. and Wood, R. J., “Increasing the dimensionality of soft microstructures through injection-induced self-folding,” Adv. Mater. 30, 1802739 (2018).CrossRefGoogle ScholarPubMed
Konda, A., Lee, D., You, T., Wang, X., Ryu, S. and Morin, S. A., “Reversible mechanical deformations of soft microchannel networks for sensing in soft robotic systems,” Adv. Intell. Syst. 1, 1900027 (2019).CrossRefGoogle Scholar
Taylor, J. M., Perez-Toralla, K., Aispuro, R. and Morin, S. A., “Covalent bonding of thermoplastics to rubbers for printable, reel-to-reel processing in soft robotics and microfluidics,” Adv. Mater. 30, 1705333 (2018).CrossRefGoogle ScholarPubMed
Garrad, M., Soter, G., Conn, A. T., Hauser, H. and Rossiter, J., “A soft matter computer for soft robots,” Sci. Rob. 4, eaaw6060 (2019).CrossRefGoogle ScholarPubMed
Gong, Q. L., Zhou, Z. Y., Yang, Y. H. and Wang, X. H., “Design, optimization and simulation on microelectromagnetic pump,” Sens. Actuator A-Phys. 83, 200207 (2000).CrossRefGoogle Scholar
Koch, M., Evans, A. G. R. and Brunnschweiler, A., “Simulation and fabrication of micromachined cantilever valves,” Sens. Actuator A-Phys. 62, 756759 (1997).CrossRefGoogle Scholar
Mosadegh, B., Kuo, C.-H., Tung, Y.-C., Torisawa, Y., Bersano-Begey, T., Tavana, H. and Takayama, S., “Integrated elastomeric components for autonomous regulation of sequential and oscillatory flow switching in microfluidic devices,” Nat. Phys. 6, 433437 (2010).CrossRefGoogle ScholarPubMed
Kim, S.-J., Yokokawa, R. and Takayama, S., “Analyzing threshold pressure limitations in microfluidic transistors for self-regulated microfluidic circuits,” Appl. Phys. Lett. 101, 234107 (2012).CrossRefGoogle ScholarPubMed
Shin, J., Park, H., Dang, V. B., Kimb, C.-W. and Kim, S.-J., “Elastomeric microfluidic valve with low, constant opening threshold pressure,” RSC Adv. 5, 2323923245 (2015).CrossRefGoogle Scholar
Rhee, M. and Burns, M. A., “Microfluidic pneumatic logic circuits and digital pneumatic microprocessors for integrated microfluidic systems,” Lab Chip 9, 31313143 (2009).CrossRefGoogle ScholarPubMed
Baek, J. Y., Park, J. Y., Ju, J. I., Lee, T. S. and Lee, S. H., “A pneumatically controllable flexible and polymeric microfluidic valve fabricated via in situ development,” J. Micromech. Microeng. 15, 10151020 (2005).CrossRefGoogle Scholar
Xie, J., Shih, J., Lin, Q. A., Yang, B. Z. and Tai, Y. C., “Surface micromachined electrostatically actuated micro peristaltic pump,” Lab Chip 4, 495501 (2004).CrossRefGoogle ScholarPubMed
Truong, T. Q. and Nguyen, N. T., “A polymeric piezoelectric micropump based on lamination technology,” J. Micromech. Microeng. 14, 632638 (2004).CrossRefGoogle Scholar
Khoo, M. and Liu, C., “A Novel Micromachined Magnetic Membrane Microfluid Pump,” Proceedings of the 22nd Annual International Conference of the IEEE-Engineering-in-Medicine-and-Biology-Society, vol. 22 (IEEE, New York, 2000) pp. 23942397.Google Scholar
Wehner, M., Truby, R. L., Fitzgerald, D. J., Mosadegh, B., Whitesides, G. M., Lewis, J. A. and Wood, R. J., “An integrated design and fabrication strategy for entirely soft, autonomous robots,” Nature, 451–455 (2016).Google Scholar
Bartlett, N. W., Becker, K. P. and Wood, R. J., “A fluidic demultiplexer for controlling large arrays of soft actuators,” Soft Matter 16, 58715877 (2020).CrossRefGoogle ScholarPubMed
Lin, K.-Y., King, N. R. and Wehner, M., “MAX, A Passive Microfluidic Control Valve, Toward Untethered Cyclic Combustion in Soft Robots,” 2024 IEEE International Conference on Soft Robotics 7th International Conference on Soft Robotics (ROBOSOFT) (IEEE, 2024) pp. 2227 Google Scholar
Keating, S. J., Gariboldi, M. I., Patrick, W. G., Sharma, S., Kong, D. S. and Oxman, N., “3D printed multimaterial microfluidic valve,” PLoS One 11, e0160624 (2016).CrossRefGoogle ScholarPubMed
Halsey, T. C., “Electrorheological Fluids,” Science 258(5083), 761766 (1992).CrossRefGoogle ScholarPubMed
Wen, W., Huang, X. and Sheng, P., “Electrorheological fluids: Structures and mechanisms,” Soft Matter 4, 200210 (2008).CrossRefGoogle ScholarPubMed
Sadeghi, A., Beccai, L. and Mazzolai, B., “Innovative Soft Robots Based on Electro-Rheological Fluids,” 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2012) (IEEE, Vilamoura-Algarve, Portugal, 2012) pp. 42374242.Google Scholar
Huang, T., Xu, D., Zhang, H., Bai, O., Aravelli, A., Zhou, X. and Han, B., “A lightweight flexible semi-cylindrical valve for seamless integration in soft robots based on the giant electrorheological fluid,” Sens. Actuators A: Phys. 347, 113905 (2022).CrossRefGoogle Scholar
Sudhawiyangkul, T., Yoshida, K., Eom, S. I. and Kim, J., “A study on a hybrid structure flexible electro-rheological microvalve for soft microactuators,” Microsyst. Technol. 26, 309321 (2020).CrossRefGoogle Scholar
Tonazzini, A., Sadeghi, A. and Mazzolai, B., “Electrorheological valves for flexible fluidic actuators,” Soft Rob. 3, 3441 (2016).CrossRefGoogle Scholar
Zatopa, A., Walker, S. and Menguc, Y., “Fully soft 3D-printed electroactive fluidic valve for soft hydraulic robots,” Soft Rob. 5, 258271 (2018).CrossRefGoogle ScholarPubMed
Behbahani, S. B. and Tan, X., “Design and dynamic modeling of electrorheological fluid-based variable-stiffness fin for robotic fish,” Smart Mater. Struct. 26, 085014 (2017).CrossRefGoogle Scholar
Sadi, F., Holthausen, J., Stallkamp, J. and Siegfarth, M., “Development of novel hydraulic 3D printed actuator using electrorheological fluid for robotic endoscopy,” Actuators 13, 119 (2024).CrossRefGoogle Scholar
Choi, S.-B., Park, D.-W. and Cho, M.-S., “Position control of a parallel link manipulator using electro-rheological valve actuators mechatronics,” Mechatronics 11, 157181 (2001).CrossRefGoogle Scholar
Kim, J.-W., Yoshida, K., Kouda, K. and Yokota, S., “A flexible electro-rheological microvalve (FERV) based on SU-8 cantilever structures and its application to microactuators,” Sens. Actuators A: Phys. 156, 366372 (2009).CrossRefGoogle Scholar
Dong, Y. Z., Seo, Y. and Choi, H. J., “Recent development of electro-responsive smart electrorheological fluids,” Soft Matter 15, 34733486 (2019).CrossRefGoogle ScholarPubMed
De Vicente, J., Klingenberg, D. J. and Hidalgo-Alvarez, R., “Magnetorheological fluids: A review,” Soft Matter 7, 37013710 (2011).CrossRefGoogle Scholar
Bossis, G., Lacis, S., Meunier, A. and Volkova, O., “Magnetorheological fluids,” J. Magn. Magn. Mater. 252, 224228 (2002).CrossRefGoogle Scholar
Leps, T., Glick, P. E., Ruffatto, III. D., Parness, A., Tolley, M. T. and Hartzell, C., “A low-power, jamming, magnetorheological valve using electropermanent magnets suitable for distributed control in soft robots,” Smart Mater. Struct. 29, 105025 (2020).CrossRefGoogle Scholar
Balak, R. and Mazumdar, Y. C., “Bistable valves for MR fluid-based soft robotic actuation systems,” IEEE Rob. Autom. Lett. 6, 82858292 (2021).CrossRefGoogle Scholar
McDonald, K., Rendos, A., Woodman, S., Brown, K. A. and Ranzani, T., “Magnetorheological fluid-based flow control for soft robots,” Adv. Intell. Syst. 2, 2000139 (2020).CrossRefGoogle Scholar
McDonald, K. J., Enabling Complexity in Fluidically Actuated Soft Robots via Onboard Control Hardware Ph.D. Thesis (2023).Google Scholar
Wang, S., He, L., Albini, A., Zhang, P. and Maiolino, P., “A magnetorheological elastomer-based proportional valve for soft pneumatic actuators,” Adv. Intell. Syst. 5, 2200238 (2023).CrossRefGoogle Scholar
Wang, S., Zhang, P., He, L. and Maiolino, P., “Toward onboard proportional control of multi-chamber soft pneumatic robots: A magnetorheological elastomer valve array,” Soft Rob. 11(4), 617627 (2024).CrossRefGoogle ScholarPubMed
Böse, H., Rabindranath, R. and Ehrlich, J., “Soft magnetorheological elastomers as new actuators for valves,” J. Intell. Mater. Syst. Struct. 23, 989994 (2012).CrossRefGoogle Scholar
Williamson, J. G., Schell, C., Keller, M. and Schultz, J., “Extending the Reach of Single-Chamber Inflatable Soft Robots Using Magnetorheological Fluids,” 2021 IEEE 4th International Conference on Soft Robotics (RoboSoft) (IEEE, 2021) pp. 119–125.CrossRefGoogle Scholar
McDonald, K. J., Kinnicutt, L., Moran, A. M. and Ranzani, T., “Modulation of magnetorheological fluid flow in soft robots using electropermanent magnets,” IEEE Rob. Autom. Lett. 7, 39143921 (2022).CrossRefGoogle Scholar
Hua, D., Liu, X., Sun, S., Sotelo, M. A., Li, Z. and Li, W., “A magnetorheological fluid-filled soft crawling robot with magnetic actuation,” IEEE/ASME Trans. Mechatron. 25, 27002710 (2020).CrossRefGoogle Scholar
Chauhan, V., Kumar, A. and Sham, R., “Magnetorheological fluids: A comprehensive review,” Manuf. Rev. 11, 6 (2024).Google Scholar
Onal, C. D. and Rus, D., “Autonomous undulatory serpentine locomotion utilizing body dynamics of a fluidic soft robot,” Bioinspir. Biomim. 8, 026003 (2013).CrossRefGoogle ScholarPubMed
Pal, A., Restrepo, V., Goswami, D. and Martinez, R. V., “Exploiting mechanical instabilities in soft robotics: Control, sensing, and actuation,” Adv. Mater. 33, 2006939 (2021).CrossRefGoogle ScholarPubMed
Luo, M., Tao, W., Chen, F., Khuu, T. K., Ozel, S. and Onal, C. D., “Design Improvements and Dynamic Characterization on Fluidic Elastomer Actuators for a Soft Robotic Snake,” 2014 IEEE International Conference on Technologies for Practical Robot Applications (TePRA) (IEEE, Woburn, MA, USA, 2014) pp. 1–6.CrossRefGoogle Scholar
Remy, C. D., Brei, Z., Bruder, D., Remy, J., Buffinton, K. and Gillespie, R. B., “The “Fluid Jacobian”: Modeling force-motion relationships in fluid-driven soft robots,” Int. J. Rob. Res. 43, 628645 (2024).CrossRefGoogle Scholar
Song, X., Cui, L., Cao, M., Cao, W., Park, Y. and Dempster, W. M., “A CFD analysis of the dynamics of a direct-operated safety relief valve mounted on a pressure vessel,” Energy Convers. Manag. 81, 407419 (2014).CrossRefGoogle Scholar
Jelali, M. and Kroll, A., Hydraulic Servo-Systems (Springer London, London, 2003).CrossRefGoogle Scholar
Katzschmann, R. K., Marchese, A. D. and Rus, D., "Hydraulic Autonomous Soft Robotic Fish for 3D Swimming Experimental Robotics,” In: Springer Tracts in Advanced Robotics (Hsieh, M. A., Khatib, O. and Kumar, V., eds.), vol. 109 (Springer International Publishing, Cham, 2016) pp. 405420.Google Scholar
Katzschmann, R. K., DelPreto, J., MacCurdy, R. and Rus, D., “Exploration of underwater life with an acoustically controlled soft robotic fish,” Sci. Rob. 3, eaar3449 (2018).CrossRefGoogle ScholarPubMed
Tan, Q., Chen, Y., Liu, J., Zou, K., Yi, J., Liu, S. and Wang, Z., “Underwater crawling robot with hydraulic soft actuators,” Front. Robot. AI 8, 688697 (2021).CrossRefGoogle ScholarPubMed
Sinatra, N. R., Teeple, C. B., Vogt, D. M., Parker, K. K., Gruber, D. F. and Wood, R. J., “Ultragentle manipulation of delicate structures using a soft robotic gripper,” Sci. Rob. 4, eaax5425 (2019).CrossRefGoogle ScholarPubMed
Shi, H., Tan, K., Zhang, B. and Liu, W., “Review on research progress of hydraulic powered soft actuators,” Energies 15, 9048 (2022).CrossRefGoogle Scholar
Zhang, Z. and Calderon, A. D., “Modeling and Analysis of the Segmented Gas Finger Rehabilitation Training Actuator Based on ABAQUS,” 2023 5th International Conference on Robotics, Intelligent Control and Artificial Intelligence (RICAI) 2023 5th International Conference on Robotics, Intelligent Control and Artificial Intelligence (RICAI) (IEEE, Hangzhou, China, 2023) pp. 39–43.CrossRefGoogle Scholar
Gollob, S. D. and Roche, E. T., “Towards a Pump-Controlled, Propellant-Powered Pneumatic Source for Untethered Soft Robots: Modelling and Experiments,” 2023 IEEE International Conference on Soft Robotics (RoboSoft) (IEEE, Singapore, Singapore, 2023) pp. 1–8.CrossRefGoogle Scholar
Kohll, A. X., Cohrs, N. H., Walker, R., Petrou, A., Loepfe, M., Schmid Daners, M., Falk, V., Meboldt, M. and Stark, W. J., “Long-term performance of a pneumatically actuated soft pump manufactured by rubber compression molding,” Soft Rob. 6, 206213 (2019).CrossRefGoogle ScholarPubMed
Gorissen, B., Chishiro, T., Shimomura, S., Reynaerts, D., De Volder, M. and Konishi, S., “Flexible pneumatic twisting actuators and their application to tilting micromirrors,” Sens. Actuators A: Phys. 216, 426431 (2014).CrossRefGoogle Scholar
Gong, X., Yang, K., Xie, J., Wang, Y., Kulkarni, P., Hobbs, A. S. and Mazzeo, A. D., “Rotary actuators based on pneumatically driven elastomeric structures,” Adv. Mater. 28, 75337538 (2016).CrossRefGoogle ScholarPubMed
Jiao, Z., Ji, C., Zou, J., Yang, H. and Pan, M., “Vacuum-powered soft pneumatic twisting actuators to empower new capabilities for soft robots,” Adv. Mater. Technol. 4, 1800429 (2019).CrossRefGoogle Scholar
Yang, D., Verma, M. S., So, J., Mosadegh, B., Keplinger, C., Lee, B., Khashai, F., Lossner, E., Suo, Z. and Whitesides, G. M., “Buckling pneumatic linear actuators inspired by muscle,” Adv. Mater. Technol. 1, 1600055 (2016).CrossRefGoogle Scholar
Walker, J., Zidek, T., Harbel, C., Yoon, S., Strickland, F. S., Kumar, S. and Shin, M., “A review of recent developments of pneumatic soft actuators,” Actuators 9, 3 (2020).CrossRefGoogle Scholar
Wang, H., Totaro, M. and Beccai, L., “Toward perceptive soft robots: Progress and challenges,” Adv. Sci. 5, 1800541 (2018).CrossRefGoogle ScholarPubMed
Zhang, Z., Zhang, L., Guan, M., Zhang, S. and Jiao, T., “Research on a variable pressure driving method for soft robots based on the electromagnetic effect,” Sensors 23, 6341 (2023).CrossRefGoogle ScholarPubMed
Hines, L., Petersen, K., Lum, G. Z. and Sitti, M., “Soft actuators for small-scale robotics,” Adv. Mater. 29, 1603483 (2017).CrossRefGoogle ScholarPubMed
Gupta, U., Qin, L., Wang, Y., Godaba, H. and Zhu, J., “Soft robots based on dielectric elastomer actuators: A review,” Smart Mater. Struct. 28, 103002 (2019).CrossRefGoogle Scholar
Gu, G.-Y., Zhu, J., Zhu, L-M. and Zhu, X., “A survey on dielectric elastomer actuators for soft robots,” Bioinspir. Biomim. 12, 011003 (2017).CrossRefGoogle ScholarPubMed
Keplinger, C., Li, T., Baumgartner, R., Suo, Z. and Bauer, S., “Harnessing snap-through instability in soft dielectrics to achieve giant voltage-triggered deformation,” Soft Matter 8, 285288 (2012).CrossRefGoogle Scholar
Xu, S., Nunez, C. M., Souri, M. and Wood, R. J., “A compact DEA-based soft peristaltic pump for power and control of fluidic,” Sci. Rob. 8, eadd4649 (2023).CrossRefGoogle ScholarPubMed
Mao, G., Huang, X., Liu, J., Li, T., Qu, S. and Yang, W., “Dielectric elastomer peristaltic pump module with finite deformation,” smart Mater. Struct. 24, 075026 (2015).CrossRefGoogle Scholar
Mao, G., Wu, L., Fu, Y., Chen, Z., Natani, S., Gou, Z., Ruan, X. and Qu, S., “Design and characterization of a soft dielectric elastomer peristaltic pump driven by electromechanical load,” IEEE/ASME Trans. Mechatron. 23, 21322143 (2018).CrossRefGoogle Scholar
Wang, K., Overvelde J.T., J. T. B., Engelbrecht, K., Bjørk, R. and Bahl, C. R. H., “Volume compensation of large-deformation 3D-printed soft elastomeric elastocaloric regenerators. Appl. Phys. Lett. 123, 223904 (2023).CrossRefGoogle Scholar
Conn, A. T., Gao, X. and Cao, C., "Contactless Coupling of Dielectric Elastomer Membranes with Magnetic Repulsion,” In: Electroactive Polymer Actuators and Devices (EAPAD) XXI (Bar-Cohen, Y. and Anderson, I. A. A., eds.) (SPIE, Denver, USA, 2019) p. 96.CrossRefGoogle Scholar
Cao, C., Gao, X. and Conn, A. T., “A magnetically coupled dielectric elastomer pump for soft robotics,” Adv. Mater. Technol. 4, 1900128 (2019).CrossRefGoogle Scholar
Cao, C.-J., Hill, T. L., Conn, A. T., Li, B. and Gao, X., “Nonlinear dynamics of a magnetically coupled dielectric elastomer actuator,” Phys. Rev. Appl. 12, 044033 (2019).CrossRefGoogle Scholar
Cao, C., Gao, X. and Conn, A. T., “A compliantly coupled dielectric elastomer actuator using magnetic repulsion,” Appl. Phys. Lett. 114, 011904 (2019).CrossRefGoogle Scholar
Dai, J., Du, Y., Zhao, W., Cao, C., Li, Y. and Gao, X., “A Magnetic Coupling Pneumatic Diaphragm Pump Driven by Dielectric Elastomers,” 2023 IEEE International Conference on Robotics and Biomimetics (ROBIO) (IEEE, Koh Samui, Thailand, 2023) pp. 1–6.CrossRefGoogle Scholar
Lin, P-W. and Liu, C.–H., “Bio-inspired soft proboscis actuator driven by dielectric elastomer fluid transducers,” Polymers 11, 142 (2019).CrossRefGoogle ScholarPubMed
Acome, E., Mitchell, S. K., Morrissey, T. G., Emmett, M. B., Benjamin, C., King, M., Radakovitz, M. and Keplinger, C., “Hydraulically amplified self-healing electrostatic actuators with muscle-like performance,” Science 359, 6165 (2018).CrossRefGoogle ScholarPubMed
Chang, M-P. and Maharbiz, M. M., “Electrostatically-driven elastomer components for user-reconfigurable high density microfluidics,” Lab Chip 9, 1274 (2009).CrossRefGoogle ScholarPubMed
Cacucciolo, V., Shintake, J., Kuwajima, Y., Maeda, S., Floreano, D. and Shea, H., “Stretchable pumps for soft machines,” Nature 572, 516519 (2019).CrossRefGoogle ScholarPubMed
Zhao, J., Yu, T., Zhang, Y., Sun, H. and Xu, M., “Electrostatically driven Kresling origami soft pump,” IEEE Rob. Autom. Lett. 9, 71667173 (2024).CrossRefGoogle Scholar
Chen, S., Cao, Y., Sarparast, M., Yuan, H., Dong, L., Tan, X. and Cao, C., “Soft crawling robots: Design, actuation, and locomotion,” Adv. Mater. Technol. 5, 1900837 (2020).CrossRefGoogle Scholar
Levikhin, A. A. and Boryaev, A. A., “Hydrogen peroxide—a promising oxidizer for rocket engines: Physical and chemical properties: Decomposition in the liquid phase,” Adsorption 30(8), 21872217 (2024).CrossRefGoogle Scholar
Yang, Y., Ren, H., Jiao, P. and He, Z., “How do combustions actuate high-speed soft robots?,” Soft Rob. 11(6), 911923 (2024).CrossRefGoogle ScholarPubMed
Wang, T., Fan, X., J. Koh, J., He, C. and H. Yeow, C., “Self-Healing Approach toward Catalytic Soft Robots,” ACS Appl Mater & Interfaces 14(36), 4059040598 (2022).CrossRefGoogle ScholarPubMed
Onal, C. D., Chen, X., Whitesides, G. M. and Rus, D., “Soft Mobile Robots with On-Board Chemical Pressure Generation ROBOTICS RESEARCH, ISRR Springer Tracts in Advanced Robotics,” 15th International Symposium of Robotics Research (ISRR), vol. 100 (Springer-Verlag Berlin, Berlin, 2017).CrossRefGoogle Scholar
Bartlett, N. W., Tolley, M. T., Overvelde, J. T. B., Weaver, J. C., Mosadegh, B., Bertoldi, K., Whitesides, G. M. and Wood, R. J., “A 3D-printed, functionally graded soft robot powered by combustion,” Science 349, 161165 (2015).CrossRefGoogle ScholarPubMed
Tolley, M. T., Shepherd, R. F., Karpelson, M., Bartlett, N. W., Galloway, K. C., Wehner, M., Nunes, R., Whitesides, G. M. and Wood, R. J., “An Untethered Jumping Soft Robot,” 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2014) (IEEE, New York, 2014) pp. 561566.Google Scholar
Zhou, H., Cao, S., Zhang, S., Li, F. and Ma, N., “Design of a fuel explosion-based chameleon-like soft robot aided by the comprehensive dynamic model,” Cyborg Bionic Syst. 4, 0010 (2023).CrossRefGoogle ScholarPubMed
Loepfe, M., Schumacher, C. M., Lustenberger, U. B. and Stark, W. J., “An untethered, jumping roly-poly soft robot driven by combustion,” Soft Robot 2, 3341 (2015).CrossRefGoogle Scholar
Shepherd, R. F., Stokes, A. A., Freake, J., Barber, J., Snyder, P. W., Mazzeo, A. D., Cademartiri, L., Morin, S. A. and Whitesides, G. M., “Using explosions to power a soft robot,” Angew. Chem. Int. Ed. 52, 28922896 (2013).CrossRefGoogle Scholar
Okui, M., Nagura, Y., Iikawa, S., Yamada, Y. and Nakamura, T., “A Pneumatic Power Source Using a Sodium Bicarbonate and Citric Acid Reaction with Pressure Booster for Use in Mobile Devices,” 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE, 2017) pp. 10401045.CrossRefGoogle Scholar
Wada, A., Nabae, H., Kitamori, T. and Suzumori, K., “Energy regenerative hose-free pneumatic actuator,” Sens. Actuator A-Phys. 249, 17 (2016).CrossRefGoogle Scholar
Aubin, C. A., Choudhury, S., Jerch, R., Archer, L. A., Pikul, J. H. and Shepherd, R. F., “Electrolytic vascular systems for energy-dense robots,” Nature 571, 51 (2019).CrossRefGoogle ScholarPubMed
Stella, F. and Hughes, J., “The science of soft robot design: A review of motivations, methods and enabling technologies,” Front. Rob. AI 9, 1059026 (2023).CrossRefGoogle ScholarPubMed
Yin, J., Li, J., Niu, S. and Xu, Q., “Bioinspired multi-joint hybrid finger: Fabric-reinforced pneumatic actuation for adaptive and human-like grasping,” Robotica, 1–17 (2025).Google Scholar
Sun, T., Liu, Y. and Tian, Y., “Bio-inspired controllable adhesion for robotics: Mechanisms, design, and future directions,” Robotica 43(7), 27512781 (2025).CrossRefGoogle Scholar
Chang, Z., Gao, R. and Sun, F., “Development and kinematics/dynamics analysis of novel hybrid hand with flexible coupling chain,” Robotica, 1–22 (2025).CrossRefGoogle Scholar
Bröhl, A. P.. Das V-Modell: Der Standard für die Softwareentwicklung mit Praxisleitfaden (Oldenbourg, 1993).Google Scholar
Gausemeier, J. and Moehringer, S., “VDI 2206-a new guideline for the design of mechatronic systems,” IFAC Proc. 35(2), 785790 (2002).CrossRefGoogle Scholar
Graessler, I., Hentze, J. and Bruckmann, T., “V-Models for Interdisciplinary Systems Engineering,” DS 92: Proceedings of the DESIGN. 2018 15th International Design Conference (2018) pp. 747–756.Google Scholar
Lee, J. Y., Eom, J., Yu, S. Y. and Cho, K., “Customization methodology for conformable grasping posture of soft grippers by stiffness patterning,” Front. Rob. AI 7, 114 (2020).CrossRefGoogle ScholarPubMed
Zand, A. D., Khalili-Damghani, K. and Raissi, S., “Designing an intelligent control philosophy in reservoirs of water transfer networks in supervisory control and data acquisition system stations,” Int. J. Autom. Comput. 18(5), 694717 (2021).CrossRefGoogle Scholar
Dubied, M., Michelis, M. Y., Spielberg, A. and Katzschmann, R. K., “Sim-to-real for soft robots using differentiable fem: Recipes for meshing, damping, and actuation,” IEEE Rob. Autom. Lett. 7(2), 50155022 (2022).CrossRefGoogle Scholar
Howison, T., Hauser, S., Hughes, J. and Iida, F., “Reality-assisted evolution of soft robots through large-scale physical experimentation: A review,” Artif. Life 26(4), 484506 (2020).CrossRefGoogle ScholarPubMed
Ma, Z., Wang, Y., Zhang, T. and Liu, J., “Reconfigurable exomuscle system employing parameter tuning to assist hip flexion or ankle plantarflexion,” IEEE/ASME Trans. Mechatron., 1–12 (2025).Google Scholar
Liu, J., Li, P., Huang, Z., Liu, H. and Huang, T., “Earthworm-inspired multimodal pneumatic continuous soft robot enhanced by winding transmission,” Cyborg Bionic Syst. (2025). cbsystems.0204.Google Scholar
Bettella, F., Tortora, S., Menegatti, E., Petrone, N. and Felice, A. D., “A scoping review on lower limb exoskeleton actuation’s description and characteristics,” Robotica 43(4), 15721589 (2025).CrossRefGoogle Scholar
Yang, Y., Li, S., Li, Z., Zhou, Z. and Wang, J., “Development of a novel unpowered rigid-flexible coupling waist exoskeleton through dynamic dimensional synthesis inspired by biomimetic cooperation,” Robotica 43(6), 22462272 (2025).CrossRefGoogle Scholar
Zhang, C., Chen, J., Xu, C., He, T., Zhang, X., Zhang, J., Sun, X., Xu, B., Zhu, Y. and Yang, H., “Flexible electro-hydraulic power chips,” Nat. Commun. 16, 1404 (2025).CrossRefGoogle ScholarPubMed
Di Lallo, A., Yu, S., Slightam, J. E., Gu, G. X., Yin, J. and Su, H., “Untethered fluidic engine for high-force soft wearable robots,” Adv. Intell. Syst. 6(11), 2400171 (2024).CrossRefGoogle Scholar