Hostname: page-component-5b777bbd6c-f9nfp Total loading time: 0 Render date: 2025-06-18T19:16:37.742Z Has data issue: false hasContentIssue false

Force-position-workspace hybrid-based stability optimization of reconfigurable cable-driven parallel robot

Published online by Cambridge University Press:  02 June 2025

Yakun Wang
Affiliation:
School of Mechanical Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China
Daoming Wang
Affiliation:
School of Mechanical Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China
Bin Zi*
Affiliation:
School of Mechanical Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China School of Mechano-Electronic Engineering, Xidian University, Xi’ an, Shanxi, 710071, China
Dan Zhang
Affiliation:
Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hong Kong, SAR, 999077, China
*
Corresponding author: Email: zibinhfut@163.com

Abstract

Cable-driven parallel robots (CDPRs) have been widely used as motion executers for their large workspace and lower inertia. However, there are few studies on structural optimization design considering its stability. This paper proposes a stability optimization method based on force-position workspace for a reconfigurable cable-driven parallel robot (RCDPR). First, the structural optimization analysis of RCDPR is carried out. Then, the forces distribution algorithm based on the feasibility of real-time control is determined, and the boundary contour algorithm (BCA) of the RCDPR force feasible workspace (FFW) on the central plane is proposed. Second, the stiffness and cables driving force space (CFS) models of RCDPR are established. Subsequently, the stability evaluation function is established to optimize the structure of RCDPR, which uses FFW and main task feasible workspace (MFW) as carriers and stiffness and CFS as weights. Finally, an experimental prototype of the developed robot is constructed, and motion performance and workspace verification experiments are conducted. The results demonstrate that the developed RCDPR has good motion accuracy and stable workspace, and the results also verify the feasibility of the stability evaluation function and BCA.

Type
Research Article
Copyright
© The Author(s) 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Wang, X., Zhang, D. and Zhao, C., “Singularity analysis and treatment for a 7R 6-DOF painting robot with non-spherical wrist,” Mech. Mach. Theory 126, 92107 (2018). doi:10.1016/j.mechmachtheory.2018.03.018.CrossRefGoogle Scholar
Wang, Y., Li, M. and Wang, J., “Kinematic calibration method for large-sized 7-DOF hybrid spray-painting robots,” Machines 11(1), 20 (2022). doi: 10.3390/machines11010020.CrossRefGoogle Scholar
Zhang, B., Wu, J. and Wang, L., “A method to realize accurate dynamic feedforward control of a spray-painting robot for airplane wings,” IEEE-ASME Trans. Mechatron. 23(3), 11821192 (2018). doi:10.1109/TMECH.2018.2817884.Google Scholar
Wang, Y., Xie, L. and Wang, H., “Intelligent spraying robot for building walls with mobility and perception,” Autom. Constr. 139, 104270 (2022). doi:10.1016/j.autcon.2022.104270.CrossRefGoogle Scholar
Liu, Y., Zi, B. and Wang, Z., “Adaptive lead-through teaching control for spray-painting robot with closed control system,” Robotica 41(4), 12951312 (2023). doi:10.1017/S0263574722001710.CrossRefGoogle Scholar
Wang, W., Tian, W. and Liao, W., “Error compensation of industrial robot based on deep belief network and error similarity,” Robot. Comput.-Integr. Manuf. 73, 102220 (2022). doi:10.1016/j.rcim.2021.102220.CrossRefGoogle Scholar
Zeng, Y., Tian, W. and Liao, W., “Positional error similarity analysis for error compensation of industrial robots,” Robot. Comput.-Integr. Manuf. 42, 113120 (2016). doi:10.1016/j.rcim.2016.05.011.CrossRefGoogle Scholar
Liu, X. J., Li, J. and Zhou, Y., “Kinematic optimal design of a 2-degree-of-freedom 3-parallelogram planar parallel manipulator,” Mech. Mach. Theory 87, 117 (2015). doi:10.1016/j.mechmachtheory.2014.12.014.CrossRefGoogle Scholar
Li, W., Zou, Y. and Ma, X., “Novel neural controllers for kinematic redundancy resolution of joint-constrained gough-stewart robot,” IEEE Trans. Ind. Inform. 20(3), 45594570 (2023). doi:10.1109/TII.2023.3326553.CrossRefGoogle Scholar
Meng, Z., Cao, W. and Ding, H., “A new six degree-of-freedom parallel robot with three limbs for high-speed operations,” Mech. Mach. Theory 173, 104875 (2022). doi:10.1016/j.mechmachtheory.2022.104875.CrossRefGoogle Scholar
Métillon, M., Cardou, P. and Subrin, K., “A cable-driven parallel robot with full-circle end-effector rotations,” J. Mech. Robot. 13(3), 031017 (2021). doi:10.1115/1.4049631.CrossRefGoogle Scholar
Badrikouhi, M. and Bamdad, M., “Design modelling, implementation, and trajectory planning of a 3-DOF cable driven parallel robot,” Appl. Math. Model. 125, 210229 (2024). doi:10.1016/j.apm.2023.09.018.CrossRefGoogle Scholar
Wei, H., Qiu, Y. and Sheng, Y., “On the cable pseudo-drag problem of cable-driven parallel camera robots at high speeds,” Robotica 37(10), 16951709 (2019). doi:10.1017/S0263574719000201.CrossRefGoogle Scholar
Xu, F., Zi, B. and Yu, Z., “Design and implementation of a 7-DOF cable-driven serial spray-painting robot with motion-decoupling mechanisms,” Mech. Mach. Theory 192, 105549 (2024). doi:10.1016/j.mechmachtheory.2023.105549.CrossRefGoogle Scholar
Oyman, E. L., Bayraktaroglu, Z. Y. and Arslan, M. S., “Design and control of a cable-driven rehabilitation robot for upper and lower limbs,” Robotica 40(1), 137 (2022). doi:10.1017/S0263574721000357.CrossRefGoogle Scholar
Li, Y., Zi, B. and Sun, Z., “Implementation of cable-driven waist rehabilitation robotic system using fractional-order controller,” Mech. Mach. Theory 190, 105460 (2023). doi:10.1016/j.mechmachtheory.2023.105460.CrossRefGoogle Scholar
Rasheed, T., Long, P. and Caro, S., “Wrench-feasible workspace of mobile cable-driven parallel robots,” J. Mech. Robot. 12(3), 031009 (2020). doi:10.1115/1.4045423.CrossRefGoogle Scholar
Rasheed, T., Long, P. and Marquez-Gamez, D., “Available Wrench Set for Planar Mobile Cable-Driven Parallel Robots,” 2018 IEEE International Conference on Robotics and Automation (ICRA) (2018) pp. 962967. doi:10.1109/ICRA.2018.8461199.CrossRefGoogle Scholar
Wang, R., Li, S. and Li, Y., “A suspended cable-driven parallel robot with articulated reconfigurable moving platform for Schönflies motions,” IEEE-ASME Trans. Mechatron. 27(6), 51735184 (2022). doi:10.1109/TMECH.2022.3175217.CrossRefGoogle Scholar
Duan, J., Liu, H. and Zhang, Z., “Reconfiguration and performance evaluation of TBot cable-driven parallel robot,” J. Mech. Robot. 17(1), 010909 (2025). doi:10.1115/1.4065680.CrossRefGoogle Scholar
Seriani, S., Seriani, M. and Gallina, P., “Workspace optimization for a planar cable-suspended direct-driven robot, robot,” Comput.-Integr. Manuf. 34, 17 (2015). doi:10.1016/j.rcim.2015.01.004.CrossRefGoogle Scholar
McDonald, E., Arsenault, M. and Beites, S., “Design of a 3-degrees-of-freedom cable-driven parallel robot for automated construction based on workspace and kinematic sensitivity,” J. Mech. Robot. 16(2), 021006 (2024). doi:10.1115/1.4056709.CrossRefGoogle Scholar
Cui, Z. and Tang, X., “Analysis of stiffness controllability of a redundant cable-driven parallel robot based on its configuration,” Mechatronics 75, 102519 (2021). doi:10.1016/j.mechatronics.2021.102519.CrossRefGoogle Scholar
Zhang, Z., Shao, Z. and Wang, L., “Optimization and implementation of a high-speed 3-DOFs translational cable-driven parallel robot,” Mech. Mach. Theory 145, 103693 (2020). doi:10.1016/j.mechmachtheory.2019.103693.CrossRefGoogle Scholar
Cheng, H. H. and Lau, D., “Cable attachment optimization for reconfigurable cable-driven parallel robots based on various workspace conditions,” IEEE Trans. Robot. 39(5), 37593775 (2023). doi:10.1109/TRO.2023.3288838.CrossRefGoogle Scholar
Bolboli, J., Khosravi, M. A. and Abdollahi, F., “Stiffness feasible workspace of cable-driven parallel robots with application to optimal design of a planar cable robot,” Robot. Auton. Syst. 114, 1928 (2019). doi:10.1016/j.robot.2019.01.012.CrossRefGoogle Scholar
Liu, S., Mei, J. and Wang, P., “Optimal design of a coupling-input cable-driven parallel robot with passive limbs based on force space analysis,” Mech. Mach. Theory 184, 105296 (2023). doi:10.1016/j.mechmachtheory.2023.105296.CrossRefGoogle Scholar
Hamida, I. B., Laribi, M. A. and Mlika, A., “Multi-objective optimal design of a cable driven parallel robot for rehabilitation tasks,” Mech. Mach. Theory 156, 104141 (2021). doi:10.1016/j.mechmachtheory.2020.104141.CrossRefGoogle Scholar
Reichert, C. and Bruckmann, T., “Optimization of the Geometry of a Cable-Driven Storage and Retrieval System,” Robotics and Mechatronics: Proceedings of the Fifth IFToMM International Symposium on Robotics & Mechatronics (ISRM 2017), vol. 5 (2019) pp.225237. doi:10.1007/978-3-030-17677-8_18.CrossRefGoogle Scholar
Tan, H., Muntashir, R. and Nurahmi, L., “Stability analysis of a reconfigurable and mobile cable-driven parallel robot,” IEEE Access 12, 1418214193 (2024). doi:10.1109/ACCESS.2024.3355134.CrossRefGoogle Scholar
Gagliardini, L., Caro, S. and Gouttefarde, M., “Discrete reconfiguration planning for cable-driven parallel robots,” Mech. Mach. Theory 100, 313337 (2016). doi:10.1016/j.mechmachtheory.2016.02.014.CrossRefGoogle Scholar
Gosselin, C. and Grenier, M., “On the determination of the force distribution in overconstrained cable-driven parallel mechanisms,” Meccanica 46(1), 315 (2011). doi:10.1007/s11012-010-9369-x.CrossRefGoogle Scholar
Gouttefarde, M., Daney, D. and Merlet, J. P., “Interval-analysis-based determination of the wrench-feasible workspace of parallel cable-driven robots,” IEEE Trans. Robot. 27(1), 113 (2010). doi:10.1109/TRO.2010.2090064.CrossRefGoogle Scholar
Song, D., Lu, M., Wang, H. and Zhang, L., “A novel real-time tension distribution method for cable-driven parallel robots,” Robotica 42(11), 117 (2024). doi:10.1017/S0263574724001590.CrossRefGoogle Scholar
Liu, P., Qiu, Y. and Su, Y., “On the minimum cable tensions for the cable-based parallel robots,” J. Appl. Math. 1, 18 (2014). doi:10.1155/2014/350492.Google Scholar
Liu, P., Qiu, Y. and Su, Y., “A new hybrid force-position measure approach on the stability for a camera robot,” Proc. Inst. Mech. Eng. Part C-J. Eng. Mech. Eng. Sci. 230(14), 25082516 (2016). doi:10.1177/0954406215597712.CrossRefGoogle Scholar
Zhang, Z., Shao, Z. and Peng, F., “Workspace analysis and optimal design of a translational cable-driven parallel robot with passive springs,” J. Mech. Robot. 12(5), 051005 (2020). doi:10.1115/1.4046030.CrossRefGoogle Scholar
Carricato, M., “Static workspace computation for underactuated cable-driven parallel robots,” Mech. Mach. Theory 193, 105551 (2024). doi:10.1016/j.mechmachtheory.2023.105551.Google Scholar
Chaudhury, A. N. and Ghosal, A., “Optimum design of multi-degree-of-freedom closed-loop mechanisms and parallel manipulators for a prescribed workspace using Monte Carlo method,” Mech. Mach. Theory 118, 115138 (2017). doi:10.1016/j.mechmachtheory.2017.07.021.CrossRefGoogle Scholar
Abbasnejad, G., Eden, J. and Lau, D., “Generalized ray-based lattice generation and graph representation of wrench-closure workspace for arbitrary cable-driven robots,” IEEE Trans. Robot. 35(1), 147161 (2018). doi:10.1109/TRO.2018.2871395.CrossRefGoogle Scholar
Stump, E. and Kumar, V., “Workspaces of cable-actuated parallel manipulators,” J. Mech. Des. 128(1), 159167 (2006). doi:10.1115/1.2121741.CrossRefGoogle Scholar
Liu, X., Qiu, Y. Y. and Sheng, Y., “Proofs of existence conditions for workspaces of cable-driven parallel robots and a uniform solution strategy for the workspaces,” Chin. J. Mech. Eng. 46(7), 2734 (2010). doi:10.3901/JME.2010.07.027.CrossRefGoogle Scholar
Pham, C. B., Yeo, S. H. and Yang, G., “Force-closure workspace analysis of cable-driven parallel mechanisms,” Mech. Mach. Theory 41(1), 5369 (2006). doi:10.1016/j.mechmachtheory.2005.04.003.CrossRefGoogle Scholar
Bosscher, P., Riechel, A. T. and Ebert-Uphoff, I., “Wrench-feasible workspace generation for cable-driven robots,” IEEE Trans. Robot. 22(5), 890902 (2006). doi:10.1109/TRO.2006.878967.CrossRefGoogle Scholar
Supplementary material: File

Wang et al. supplementary material

Wang et al. supplementary material
Download Wang et al. supplementary material(File)
File 60.2 MB