Hostname: page-component-5b777bbd6c-gtgcz Total loading time: 0 Render date: 2025-06-18T19:15:29.531Z Has data issue: false hasContentIssue false

A morphologically adaptive dome-shaped tactile sensor for evaluating elastic modulus and defect depth

Published online by Cambridge University Press:  16 June 2025

Cuong Manh Bui
Affiliation:
Faculty of Mechanical Engineering, Le Quy Don Technical University, Hanoi, Vietnam
Trang Xuan Mai
Affiliation:
School of Computing, Phenikaa University, Hanoi, Vietnam
Anh Viet Phan
Affiliation:
Institute of Information and Communication Technology, Le Quy Don Technical University, Hanoi, Vietnam
Hiep Xuan Trinh*
Affiliation:
Faculty of Mechanical Engineering, Le Quy Don Technical University, Hanoi, Vietnam
*
Corresponding author: Hiep Xuan Trinh; Email: hieptx@mta.edu.vn

Abstract

This article introduces a dome-type soft tactile sensor that can autonomously adjust its stiffness to evaluate surface contact characteristics, including the elastic modulus, contact force, and the presence of abnormal hardness within soft materials, using a strain gauge as a single sensing element. The strain sensor element is placed at the tip of the dome to measure the deformations during contact that reflect the properties of the contacted object. Using machine learning techniques, the sensor system can accurately predict these characteristics in various materials with an error rate of less than approximately 8%. A hybrid approach that combines experimental and simulation data enables the sensor to be trained effectively, generating sufficient data for accurate predictions without extensive experiments. The high accuracy results of the machine learning models demonstrate that the sensor system can precisely calculate the elastic modulus and depth of the defect. The adaptability and precision of the proposed sensor make it ideal for applications in medical diagnostics and other fields requiring careful interaction with soft materials. Furthermore, its innovative approach can be referenced for exploiting the properties of soft materials to achieve task-specific morphology without redesigning soft sensors or soft robots.

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Wang, R., Hu, S., Zhu, W., Huang, Y., Wang, W., Li, Y., Yang, Y., Yu, J. and Deng, Y., “Recent progress in high-resolution tactile sensor array: From sensor fabrication to advanced applications,” Prog Nat Sci: Mater Int. 33(1), 5566 (2023).10.1016/j.pnsc.2023.02.005CrossRefGoogle Scholar
Wang, C., Liu, C., Shang, F., Niu, S., Ke, L., Zhang, N., Ma, B., Li, R., Sun, X. and Zhang, S., “Tactile sensing technology in bionic skin: A review,” Biosens Bioelectron. 220, 114882 (2023).10.1016/j.bios.2022.114882CrossRefGoogle ScholarPubMed
Qu, J., Mao, B., Li, Z., Xu, Y., Zhou, K., Cao, X., Fan, Q., Xu, M., Liang, B., Liu, H., Wang, X. and Wang, X., “Recent progress in advanced tactile sensing technologies for soft grippers,” Adv. Funct. Mater. 33(41), 2306249 (2023).10.1002/adfm.202306249CrossRefGoogle Scholar
Lin, Z., Wang, Z., Zhao, W., Xu, Y., Wang, X., Zhang, T., Sun, Z., Lin, L. and Peng, Z., “Recent advances in perceptive intelligence for soft robotics,” Adv. Intell. Syst. 5(5), 2200329 (2023).10.1002/aisy.202200329CrossRefGoogle Scholar
Sarwar, M. S., Ishizaki, R., Morton, K., Preston, C., Nguyen, T., Fan, X., Dupont, B., Hogarth, L., Yoshiike, T., Qiu, R., Wu, Y., Mirabbasi, S. and Madden, J. D. W., “Touch, press and stroke: A soft capacitive sensor skin,” Sci Rep. 13(1), 17390 (2023).10.1038/s41598-023-43714-6CrossRefGoogle ScholarPubMed
Trinh, H. X., Ho, V. A. and Shibuya, K., “Computational model for tactile sensing system with wrinkle’s morphological change,” Adv Robot. 32(21), 11351150 (2018).10.1080/01691864.2018.1525322CrossRefGoogle Scholar
Gariya, N., Kumar, P. and Prasad, B., “Development of a soft pneumatic actuator with in-built flexible sensing element for soft robotic applications,” J. Intell. Robot. Syst. 109(1), 19 (2023).10.1007/s10846-023-01955-7CrossRefGoogle Scholar
Lv, C., Tian, C., Jiang, J., Dang, Y., Liu, Y., Duan, X., Li, Q., Chen, X. and Xie, M., “Ultrasensitive linear capacitive pressure sensor with wrinkled microstructures for tactile perception,” Adv Sci. 10(14), 2206807 (2023).10.1002/advs.202206807CrossRefGoogle ScholarPubMed
Sepehri, A., Helisaz, H. and Chiao, M., “A fiber Bragg grating tactile sensor for soft material characterization based on quasi linear viscoelastic analysis,” Sens. Actuator A: Phys. 349, 114079 (2023).10.1016/j.sna.2022.114079CrossRefGoogle Scholar
Dai, H., Zhang, C., Pan, C., Hu, H., Ji, K., Sun, H., Lyu, C., Tang, D., Li, T., Fu, J. and Zhao, P., “Split-type magnetic soft tactile sensor with 3D force decoupling,” Adv Mater. 36(11), 2310145 (2024).10.1002/adma.202310145CrossRefGoogle ScholarPubMed
Xiong, P., Huang, Y., Yin, Y., Zhang, Y. and Song, A., “A novel tactile sensor with multimodal vision and tactile units for multifunctional robot interaction,” Robotica 42(5), 14201435 (2024).10.1017/S0263574724000286CrossRefGoogle Scholar
Zhao, S., Nguyen, C. C., Hoang, T. T., Do, T. N. and Phan, H. P., “Transparent pneumatic tactile sensors for soft biomedical robotics,” Sensors 23(12), 5671 (2023).10.3390/s23125671CrossRefGoogle ScholarPubMed
Ye, J., Chen, K., Chen, L., You, Z., Jiang, J. and Wu, H., “Highly linear capacitive tactile sensor with elastic dome-shaped electrodes,” Smart Mater. Struct. 31(7), 075002 (2022).10.1088/1361-665X/ac69beCrossRefGoogle Scholar
Won, C.-H., Lee, J.-H. and Saleheen, F., “Tactile sensing systems for tumor characterization: A review,” IEEE Sens. J. 21(11), 1257812588 (2021).10.1109/JSEN.2021.3078369CrossRefGoogle Scholar
Gomes, D. F., Lin, Z. and Luo, S., “GelTip: A Finger-Shaped Optical Tactile Sensor for Robotic Manipulation,” 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, NV, USA (2020) pp. 9903–9909.Google Scholar
Zhong, C., Zhao, S., Liu, Y., Li, Z., Kan, Z. and Feng, Y., “A flexible wearable e-skin sensing system for robotic teleoperation,” Robotica 41(3), 10251038 (2023).10.1017/S026357472200131XCrossRefGoogle Scholar
Kim, T., Lee, S., Hong, T., Shin, G., Kim, T. and Park, Y.-L., “Heterogeneous sensing in a multifunctional soft sensor for human-robot interfaces,” Sci. Robot. 5(49), eabc6878 (2020).10.1126/scirobotics.abc6878CrossRefGoogle Scholar
Stroppa, F., Majeed, F. J., Batiya, J., Baran, E. and Sarac, M., “Optimizing soft robot design and tracking with and without evolutionary computation: An intensive survey,” Robotica 42(8), 28482884 (2024).10.1017/S0263574724001152CrossRefGoogle Scholar
Shan, X., Xu, L. and Li, X., “A variable stiffness design method for soft robotic fingers based on grasping force compensation and linearization,” Robotica 42(6), 20612083 (2024).10.1017/S026357472400081XCrossRefGoogle Scholar
Hughes, J., Scimeca, L., Maiolino, P. and Iida, F., “Online morphological adaptation for tactile sensing augmentation,” Front. Robot. AI 8, 665030 (2021).10.3389/frobt.2021.665030CrossRefGoogle ScholarPubMed
Trinh, H. and Xuan, etal, “Localization of sliding movements using soft tactile sensing systems with three-axis accelerometers,” Ah S Sens 19(9), 2019 (2036).Google Scholar
Yuan, W., Srinivasan, M. A. and Adelson, E. H., “Estimating Object Hardness with a Gelsight Touch Sensor,” IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), IEEE, Daejeon, Korea (South) (2016) pp. 208215.Google Scholar
Qi, Q., Hirai, S. and Ho, V. A., “Wrinkled soft sensor with variable afferent morphology,” IEEE Robot. Autom. Lett. 4(2), 19081915 (2019).10.1109/LRA.2019.2898712CrossRefGoogle Scholar
Qi, Q. and Ho, V. A., “Wrinkled soft sensor with variable afferent morphology: Case of bending actuation,” IEEE Robot. Autom. Lett. 5(3), 41024109 (2020).10.1109/LRA.2020.2982867CrossRefGoogle Scholar
He, L., Herzig, N., Nanayakkara, T. and Maiolino, P., “3D-printed soft sensors for adaptive sensing with online and offline tunable stiffness,” Soft Robot. 9(6), 10621073 (2022).10.1089/soro.2021.0074CrossRefGoogle ScholarPubMed
Bewley, J., Jenkinson, G. P. and Tzemanaki, A., “Optical-tactile sensor for lump detection using pneumatic control,” Front. Robot. AI 8, 672315 (2021).10.3389/frobt.2021.672315CrossRefGoogle ScholarPubMed
Jenkins, B. A. and Lumpkin, E. A., “Developing a sense of touch,” Development 144(22), 40784090 (2017).10.1242/dev.120402CrossRefGoogle ScholarPubMed
Fujita, K., “Control strategies in human pinch motion to perceive the hardness of an elastic object,”" Electron Comm Japan (Part II: Electron) 87(11), 2837 (2004).10.1002/ecjb.20126CrossRefGoogle Scholar
Pleger, B. and Villringer, A., “The human somatosensory system: From perception to decision making,” Prog. Neurobiol. 103, 7697 (2013).10.1016/j.pneurobio.2012.10.002CrossRefGoogle ScholarPubMed
Dintwa, E., Tijskens, E. and Ramon, H., “On the accuracy of the Hertz model to describe the normal contact of soft elastic spheres,” Granul Matter 10(3), 209221 (2008).10.1007/s10035-007-0078-7CrossRefGoogle Scholar
Wu, C.-E., Lin, K.-H. and Juang, J.-Y., “Hertzian load–displacement relation holds for spherical indentation on soft elastic solids undergoing large deformations,” Tribol. Int. 97, 7176 (2016).10.1016/j.triboint.2015.12.034CrossRefGoogle Scholar
Trinh, H. X., Hoang, T. K., Bui, M. C. and Mai, X. T., “Stress distribution in a multi-layer soft viscoelastic material under sliding motion of a spherical indenter tip,” Mech Time-Depend Mat 28(3), 134 (2024).10.1007/s11043-024-09663-xCrossRefGoogle Scholar
Zhang, N., Shen, S.-L., Zhou, A. and Jin, Y.-F., “Application of LSTM approach for modelling stress–strain behaviour of soil,” Appl. Soft Comput. 100, 106959 (2021).10.1016/j.asoc.2020.106959CrossRefGoogle Scholar
Van Houdt, G., Mosquera, C. and Nápoles, G., “A review on the long short-term memory model,” Artif. Intell. Rev. 53(8), 59295955 (2020).10.1007/s10462-020-09838-1CrossRefGoogle Scholar