Hostname: page-component-5b777bbd6c-7sgmh Total loading time: 0 Render date: 2025-06-20T02:11:50.770Z Has data issue: false hasContentIssue false

Path planning for mobile robots in complex environments based on enhanced sparrow search algorithm and dynamic window approach

Published online by Cambridge University Press:  16 May 2025

Yixuan Luo
Affiliation:
College of Intelligent Manufacturing, Taizhou University, Taizhou, 318001, China
Shusen Lin*
Affiliation:
College of Intelligent Manufacturing, Taizhou University, Taizhou, 318001, China
Yifan Wang
Affiliation:
College of Intelligent Manufacturing, Taizhou University, Taizhou, 318001, China
Kai Liang
Affiliation:
College of Intelligent Manufacturing, Taizhou University, Taizhou, 318001, China
*
Corresponding author: Shusen Lin; Email: linshusen@tzc.edu.cn

Abstract

Traditional path planning algorithms often encounter challenges in complex dynamic environments, including local optima, excessive path lengths, and inadequate dynamic obstacle avoidance. Thus, the development of innovative path planning algorithms is essential. This article addresses the challenges of mobile robot path planning in complex environments, where traditional methods often converge to local optima, leading to suboptimal path lengths, and struggle with dynamic obstacle avoidance. To overcome these limitations, we propose an integrated algorithm, the enhanced sparrow search algorithm combined with the dynamic window approach (ESSA-DWA). The algorithm first utilizes ESSA for global path planning, followed by local path planning facilitated by the DWA. Specifically, ESSA incorporates Tent chaotic initialization to enhance population diversity, effectively mitigating the risk of premature convergence to local optima. Moreover, dynamic adjustments to the inertia weight during the search process enable an adaptive balance between exploration and exploitation. The integration of a local search strategy further refines individual updates, thereby improving local search performance. To enhance path smoothness, the Floyd algorithm is employed for path optimization, ensuring a more continuous trajectory. Finally, the combination of ESSA and DWA uses key nodes from the global path generated by ESSA as reference points for the local planning process of DWA. This approach ensures that the local path closely follows the global path while also enabling real-time dynamic obstacle detection and avoidance. The effectiveness of the algorithm has been validated through both simulations and practical experiments, offering an efficient and viable solution to the path planning problem.

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Xu, Y., Li, Q., Xu, X., Yang, J. and Chen, Y., “Research progress of nature-inspired metaheuristic algorithms in mobile robot path planning,” Electronics 12(15), 3263 (2023). doi: 10.3390/electronics12153263.CrossRefGoogle Scholar
Liu, L., Wang, X., Yang, X., Liu, H., Li, J. and Wang, P., “Path planning techniques for mobile robots: Review and prospect,” Expert Syst. Appl. 227, 120254 (2023). doi:10.1016/j.eswa.2023.120254.CrossRefGoogle Scholar
Zhang, J. and Bai, J., “Dijkstra algorithm based cooperative caching strategy for UAV-assisted edge computing system,” Wirel Netw. 30(3), 12011219 (2024). doi:10.1007/s11276-023-03551-x.CrossRefGoogle Scholar
Zhang, H., Tao, Y. and Zhu, W., “Global path planning of unmanned surface vehicle based on improved A-star algorithm,” Ah S Sens. 23(14), 6647 (2023). doi:10.3390/s23146647.CrossRefGoogle ScholarPubMed
Hao, K., Yang, Y., Li, Z., Liu, Y. and Zhao, X., “CERRT: A mobile robot path planning algorithm based on RRT in complex environments,” Appl. Sci. 13(17), 9666 (2023). doi:10.3390/app13179666.CrossRefGoogle Scholar
Liu, C., Xie, S., Sui, X., Huang, Y., Ma, X., Guo, N. and Yang, F., “PRM-D* method for mobile robot path planning,” Ah S Sens. 23(7), 3512 (2023). doi:10.3390/s23073512.CrossRefGoogle ScholarPubMed
Yang, Y., Luo, X., Li, W., Liu, C., Ye, Q. and Liang, P., “AAPF*: A safer autonomous vehicle path planning algorithm based on the improved A* algorithm and APF algorithm," Cluster Comput., 14 (2024).Google Scholar
Yin, X., Cai, P., Zhao, K., Zhang, Y., Zhou, Q. and Yao, D., “Dynamic path planning of AGV based on kinematical constraint A* algorithm and following DWA fusion algorithms,” Ah S Sens. 23(8), 4102 (2023). doi:10.3390/s23084102.CrossRefGoogle Scholar
Savkin, A. V. and Hoy, M., “Reactive and the shortest path navigation of a wheeled mobile robot in cluttered environments,” Robotica 31(2), 323330 (2013).CrossRefGoogle Scholar
Zhou, P., Xie, Z., Zhou, W. and Tan, Z., “A heuristic integrated scheduling algorithm based on improved Dijkstra algorithm,” Electronics 12(20), 4189 (2023). doi: 10.3390/electronics12204189.CrossRefGoogle Scholar
Jabbar, L. S., Abass, E. I. and Hasan, S. D., “A modification of shortest path algorithm according to adjustable weights based on Dijkstra algorithm,” Eng. Technol. J. 41(2), 359374 (2023).Google Scholar
Tang, G., Tang, C., Claramunt, C., Hu, X. and Zhou, P., “Geometric A-star algorithm: An improved A-star algorithm for AGV path planning in a port environment,” IEEE Access 9, 5919659210 (2021). doi:10.1109/ACCESS.2021.3070054.CrossRefGoogle Scholar
Li, P., Hao, L., Zhao, Y. and Lu, J., “Robot obstacle avoidance optimization by A* and DWA fusion algorithm,” PLoS ONE 19(4), e0302026 (2024). doi:10.1371/journal.pone.0302026.CrossRefGoogle Scholar
Dang, T. V. and Tan, P. X., “Hybrid mobile robot path planning using safe JBS-A* B algorithm and improved DWA based on monocular camera,” J. Intell. Robot. Syst. 110(4), 151 (2024). doi:10.1007/s10846-024-02179-z.CrossRefGoogle Scholar
Liang, Y. M. and Zhao, H. Y., “CCPF-RRT*: An improved path planning algorithm with consideration of congestion,” Expert Syst. Appl. 228, 120403 (2023). doi:10.1016/j.eswa.2023.120403.CrossRefGoogle Scholar
Novosad, M., Penicka, R. and Vonasek, V., “CTopPRM: Clustering topological PRM for planning multiple distinct paths in 3D environments,” IEEE Robot. Autom. Lett. 8(11), 73367343 (2023). doi:10.1109/LRA.2023.3315539.CrossRefGoogle Scholar
Zhang, W., Wang, N. and Wu, W., “A hybrid path planning algorithm considering AUV dynamic constraints based on improved A* algorithm and APF algorithm,” Ocean Eng. 285, 115333 (2023). doi:10.1016/j.oceaneng.2023.115333.CrossRefGoogle Scholar
Li, M., Li, B., Qi, Z., Li, J. and Wu, J., “Optimized APF-ACO algorithm for ship collision avoidance and path planning,” J. Mar. Sci. Eng. 11(6), 1177 (2023). doi:10.3390/jmse11061177.CrossRefGoogle Scholar
Pan, Z., Yuan, M., Wang, R., Wen, J., Bi, Q., Yuan, J. and Zhang, X., “Dynamic’ DWA for motion planning of mobile robots in dynamic environments,” Int. J. Dyn. Control 11(6), 31363144 (2023). doi:10.1007/s40435-022-01092-3.CrossRefGoogle Scholar
Holland, J. H., “Genetic algorithms, sci,” Am 267(1), 6673 (1992).Google Scholar
Kennedy, J. and Eberhart, R. C., “A Discrete Binary Version of the Particle Swarm Algorithm,” 1997 IEEE International Conference on Systems, Man, and Cybernetics. Computational Cybernetics and Simulation, vol. 5 (IEEE, 1997) pp. 41044108.CrossRefGoogle Scholar
Dorigo, M., Birattari, M. and Stutzle, T., “Ant colony optimization,” IEEE Comput. Intell. Mag. 1(4), 2839 (2007).CrossRefGoogle Scholar
Mirjalili, S., Mirjalili, S. M., Lewis, A. and wolf optimizer, G., Adv. Eng. Softw. 69, 4661 (2014).CrossRefGoogle Scholar
Mirjalili, S. and Lewis, A., “The whale optimization algorithm,” Adv. Eng. Softw. 95, 5167 (2016).CrossRefGoogle Scholar
Duan, H. and Qiao, P., “Pigeon-inspired optimization: A new swarm intelligence optimizer for air robot path planning,” Int. J. Intell. Comput. Cybern. 7(1), 2437 (2014).CrossRefGoogle Scholar
Li, Y., Zhao, J., Chen, Z., Xiong, G. and Liu, S., “A robot path planning method based on improved genetic algorithm and improved dynamic window approach,” Sustainability-BASEL 15(5), 4656 (2023). doi:10.3390/su15054656.CrossRefGoogle Scholar
Lin, S., Liu, A., Wang, J. and Kong, X., “An intelligence-based hybrid PSO-SA for mobile robot path planning in warehouse,” J. Comput. Sci. 67, 101938 (2023). doi:10.1016/j.jocs.2022.101938.CrossRefGoogle Scholar
Zhou, T. and Wei, W., “Mobile robot path planning based on an improved ACO algorithm and path optimization,” Multimed. Tools Appl., 124 (2024). doi:10.1007/s11042-024-19370-x.Google Scholar
Yu, X., Jiang, N., Wang, X. and Li, M., “A hybrid algorithm based on grey wolf optimizer and differential evolution for UAV path planning,” Expert Syst. Appl. 215, 119327 (2023). doi:10.1016/j.eswa.2022.119327.CrossRefGoogle Scholar
Dai, Y., Yu, J., Zhang, C., Zhan, B. and Zheng, X., “A novel whale optimization algorithm of path planning strategy for mobile robots,” Appl. Intell. 53(9), 1084310857 (2023). doi:10.1007/s10489-022-04030-0.CrossRefGoogle Scholar
Jiang, Y., Bai, T., Wang, D. and Wang, Y., “Coverage path planning of UAV based on linear programming—fuzzy C-means with pigeon-inspired optimization,” Drones 8(2), 50 (2024). doi:10.3390/drones8020050.CrossRefGoogle Scholar
Xue, J. and Shen, B., “A novel swarm intelligence optimization approach: Sparrow search algorithm,Syst. Sci. Control Eng. 8(1), 2234 (2020).CrossRefGoogle Scholar
Zheng, Y., Li, L., Qian, L., Cheng, B., Hou, W. and Zhuang, Y., “Sine-SSA-BP ship trajectory prediction based on chaotic mapping improved sparrow search algorithm,Ah S Sens. 23(2), 704 (2023). doi:10.3390/s23020704.CrossRefGoogle ScholarPubMed
Khedr, A. M., Aghbari, Z. A. and Raj, P. P., “MSSPP: Modified sparrow search algorithm based mobile sink path planning for WSNs,” Neural Comput. Appl. 35(2), 13631378 (2023). doi:10.1007/s00521-022-07794-1.CrossRefGoogle Scholar
Liu, G., Zhang, S., Ma, G. and Pan, Y., “Path planning of unmanned surface vehicle based on improved sparrow search algorithm,” J. Mar. Sci. Eng. 11(12), 2292 (2023). doi:10.3390/jmse11122292.CrossRefGoogle Scholar
Wang, Z., Sun, G., Zhou, K. and Zhu, L., “A parallel particle swarm optimization and enhanced sparrow search algorithm for unmanned aerial vehicle path planning,” Heliyon 9(4), e14784 (2023). doi:10.1016/j.heliyon.2023.e14784.CrossRefGoogle ScholarPubMed
Liu, L., Liang, J., Guo, K., Ke, C., He, D. and Chen, J., “Dynamic path planning of mobile robot based on improved sparrow search algorithm,” Biomimetics 8(2), 182 (2023). doi:10.3390/biomimetics8020182.CrossRefGoogle ScholarPubMed
Hou, J., Jiang, W., Luo, Z., Yang, L., Hu, X. and Guo, B., “Dynamic path planning for mobile robots by integrating improved sparrow search algorithm and dynamic window approach,” Actuators 13(1), 24 (2024). doi:10.3390/act13010024.CrossRefGoogle Scholar