Hostname: page-component-5b777bbd6c-v47t2 Total loading time: 0 Render date: 2025-06-18T22:37:50.689Z Has data issue: false hasContentIssue false

Acetyl-L-carnitine increases follicle survival and stromal cell density in cultured bovine ovarian tissues

Published online by Cambridge University Press:  03 June 2025

Allana M.F. Leitão
Affiliation:
Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Sobral, CE, Brazil
Antonia V.N. Azevedo
Affiliation:
Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Sobral, CE, Brazil
Bianca R. Silva
Affiliation:
Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Sobral, CE, Brazil
Efigênia C. Barbalho
Affiliation:
Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Sobral, CE, Brazil
Ernando I. Teixeira de Assis
Affiliation:
Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Sobral, CE, Brazil
Francisco C. Costa
Affiliation:
Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Sobral, CE, Brazil
Fabricio S. Martins
Affiliation:
Center of Agricultural and Biological Sciences, State University of Valley Acaraú (UVA), Sobral, CE, Brazil
José R.V. Silva*
Affiliation:
Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Sobral, CE, Brazil
*
Corresponding author: José R. V. Silva; Email: jrvsilva@ufc.br

Summary

This study aimed to evaluate the effects of acetyl-L-carnitine on follicle survival and growth, stromal cell density and extracellular matrix, as well as on the expression of mRNA for nuclear factor erythroid 2-related factor (NRF2), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX) and peroxiredoxin 6 (PRDX6) in cultured bovine ovarian cortical tissues. Ovarian fragments (3 × 3 × 1 mm) were cultured for 6 days in α-MEM+ alone or supplemented with 10, 50 or 100 μM acetyl-L-carnitine at 38.5°C with 5% CO2 in humidified air. Before (non-cultured tissues) and after culture, the ovarian fragments were fixed in 4% paraformaldehyde for 12 h for histological analysis or stored at –80ºC for mRNA expression analysis of NRF2, SOD, CAT, PRDX6 and GPX1. The results showed that 100 μM acetyl-L-carnitine increased the percentages of morphologically normal follicles and stromal cell density in cultured ovarian tissues. On the other hand, acetyl-L-carnitine did not influence the percentage of collagen in ovarian tissue nor the expression of mRNAs for NRF2, SOD, CAT, PRDX6 and GPX1. In conclusion, 100 μM acetyl-L-carnitine increased follicle survival and stromal cell density in cultured bovine ovarian tissues but does not influence collagen fibre distribution or the expression of mRNAs for NRF2, SOD, CAT, PRDX6 and GPX1.

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Abdolmaleki, A., Ghayour, M.B. and Behnam-Rassouli, M. (2020) Protective effects of acetyl-L-carnitine against serum and glucose deprivation-induced apoptosis in rat adipose-derived mesenchymal stem cells. Cell Tissue Bank 21, 655666.10.1007/s10561-020-09844-1CrossRefGoogle ScholarPubMed
Adeva-Andany, M., Calvo-Castro, I., Fernández-Fernández, C., Donapetry-García, C. and Pedre-Piñeiro, A. (2017) Significance of L-carnitine for human health. IUBMB Life 69, 578594.10.1002/iub.1646CrossRefGoogle ScholarPubMed
Albogami, S. (2023) The potential inhibitory role of acetyl-L-carnitine on proliferation, migration, and gene expression in HepG2 and HT29 Human adenocarcinoma cell lines. Current Issues in Molecular Biology 45, 23932408.10.3390/cimb45030155CrossRefGoogle ScholarPubMed
Altun, Z., Olgun, E., Ercetin, P., Aktas, S., Kirkim, G., Serbetcioglu, B., Olgun, N. and Guneri, E.A. (2014) Protective effect of acetyl-l-carnitine against cisplatin ototoxicity: role of apoptosis-related genes and pro-inflammatory cytokines. Cell Proliferation 47, 7280.10.1111/cpr.12080CrossRefGoogle ScholarPubMed
Asadi, E., Najafi, A. and Benson, J.D. (2022) Exogenous melatonin ameliorates the negative effect of osmotic stress in human and bovine ovarian stromal cells. Antioxidants 11, 1054.10.3390/antiox11061054CrossRefGoogle Scholar
Barbato, V., Genovese, V., De Gregorio, V., Di Nardo, M., Travaglione, A., De Napoli, L., Fragomeni, G., Zanetti, E.M., Adiga, S.K., Mondrone, G., D’Hooghe, T., Zheng, W., Longobardi, S., Catapano, G., Gualtieri, R. and Talevi, R. (2023) Dynamic in vitro culture of bovine and human ovarian tissue enhances follicle progression and health. Scientific Reports 13, 11773.10.1038/s41598-023-37086-0CrossRefGoogle ScholarPubMed
Bizarro-Silva, C., Santos, M.S., Gerez, J.R., González, S.M., Lisboa, L.A. and Seneda, M.M. (2018) Influence of follicle-stimulating hormone concentrations on the integrity and development of bovine follicles cultured in vitro. Zygote 26, 417423.10.1017/S0967199418000497CrossRefGoogle ScholarPubMed
Cavalcante, B.N., Matos-Brito, B.G., Paulino, L.R.F.M., Silva, B.R., Aguiar, A.W.M., DE Almeida, E.F.M., Souza, A.L.P., Vasconcelos, G.L., De Assis, E.I.T., Silva, A.W.B. and Silva, J.R.V. (2019) Effects of melatonin on morphology and development of primordial follicles during in vitro culture of bovine ovarian tissue. Reproduction in Domestic Animals 54, 15671573.10.1111/rda.13565CrossRefGoogle ScholarPubMed
Chen, X.M., Gao, C.S., Du, X.Y., Yao, J.M., He, F.F., Niu, X.T., Wang, G. and Zhang, D.M. (2020) Effects of dietary astaxanthin on the growth, innate immunity and antioxidant defence system of Paramisgurnus dabryanus. Aquaculture Nutrition 26, 14531462.10.1111/anu.13093CrossRefGoogle Scholar
Costa, F.D.C., Vasconcelos, E.M., Azevedo, V.A.N., De Assis, E.I.T., Paulino, L.R.F.M., Silva, A.W.B., Silva, J.R.V. and Batista, A.L.P.S. (2021a) Aloe vera increases collagen fibres in extracellular matrix and mRNA expression of peroxiredoxin-6 in bovine ovarian cortical tissues cultured in vitro. Zygote 30, 365372.10.1017/S0967199421000824CrossRefGoogle ScholarPubMed
Costa, F.D.C., Vasconcelos, E.M., Azevedo, V.A.N., Paulino, L.R.F.M., Soares, M.D., Silva, J.R.V., Silva, A.W.B. and Souza, A.L.P. (2021b) Aloe vera increases mRNA expression of antioxidant enzymes in cryopreserved bovine ovarian tissue and promotes follicular growth and survival after in vitro culture. Cryobiology 102, 104113.10.1016/j.cryobiol.2021.07.005CrossRefGoogle ScholarPubMed
De Figueiredo, J.R. and De Lima, L.F. (2017) Tecnologia do ovário artificial: aplicações, estado da arte, limitações e perspectivas. Revista Brasileira de Reprodução Animal 41, 248253.Google Scholar
Devos, M., Grosbois, J. and Demeestere, I. (2020) Interaction between PI3K/AKT and Hippo pathways during in vitro follicular activation and response to fragmentation and chemotherapy exposure using a mouse immature ovary model. Biology of Reproduction 102, 717729.10.1093/biolre/ioz215CrossRefGoogle ScholarPubMed
Di Emidio, G., Rea, F., Placidi, M., Rossi, G., Cocciolone, D., Virmani, A., Macchiarelli, G., Palmerini, M.G., D’Alessandro, A.M., Artini, P.G. and Tatone, C. (2020) Regulatory functions of L-carnitine, acetyl, and propionyl L-carnitine in a PCOS mouse model: focus on antioxidant/antiglycative molecular pathways in the ovarian microenvironment. Antioxidants 9, 867.10.3390/antiox9090867CrossRefGoogle Scholar
Dolmans, M.M., Donnez, J. and Cacciottola, L. (2021) Fertility preservation: the challenge of freezing and transplanting ovarian tissue. Trends in Molecular Medicine 27, 777791.10.1016/j.molmed.2020.11.003CrossRefGoogle ScholarPubMed
Dunning, K.R., Russell, D.L. and Robker, R.L. (2014) Lipids and oocyte developmental competence: the role of fatty acids and β-oxidation. Reproduction 148, R15R27.CrossRefGoogle ScholarPubMed
Grosbois, J., Bailie, E.C., Kelsey, T.W., Anderson, R.A. and Telfer, E.E. (2023) Spatio-temporal remodelling of the composition and architecture of the human ovarian cortical extracellular matrix during in vitro culture. Human Reproduction 38, 444458.10.1093/humrep/dead008CrossRefGoogle ScholarPubMed
Hartanti, M.D., Hummitzsch, K., Irving-Rodgers, H.F., Bonner, W.M., Copping, K.J., Anderson, R.A., McMillen, I.C., Perry, V.E.A. and Rodgers, R.J. (2019) Morphometric and gene expression analyses of stromal expansion during development of the bovine fetal ovary. Reproduction, Fertility and Development 31, 482495.10.1071/RD18218CrossRefGoogle ScholarPubMed
He, Z., Leong, D.J., Zhuo, Z., Majeska, R.J., Cardoso, L., Spray, D.C., Goldring, M.B., Cobelli, N.J. and Sun, H.B. (2016) Strain-induced mechanotransduction through primary cilia, extracellular ATP, purinergic calcium signaling, and ERK1/2 transactivates CITED2 and downregulates MMP-1 and MMP-13 gene expression in chondrocytes. Osteoarthritis and Cartilage 24, 892901.10.1016/j.joca.2015.11.015CrossRefGoogle ScholarPubMed
Kinnear, H.M., Tomaszewski, C.E., Chang, F.L., Moravek, M.B., Xu, M., Padmanabhan, V. and Shikanov, A. (2020) The ovarian stroma as a new frontier. Reproduction 160, R25R39.CrossRefGoogle ScholarPubMed
Modak, A.K., Alam, M.H., Islam, M.N., Paul, N., Akter, I., Hashem, M.A., Kabir, A.K.M.A. and Moniruzzaman, M. (2022) L-Carnitine supports the in vitro growth of buffalo oocytes. Animals 12, 1957.10.3390/ani12151957CrossRefGoogle ScholarPubMed
Hori, Y.S., Kuno, A., Hosoda, R. and Horio, Y. (2013) Regulação de FOXOs e p53 por moduladores SIRT1 sob estresse oxidativo. Plos One 8, 73875.10.1371/journal.pone.0073875CrossRefGoogle Scholar
Hsu, J., Fatuzzo, N., Weng, N., Michno, W., Dong, W., Kienle, M., Dai, Y., Pasca, A., Abu-Remaileh, M., Rasgon, N., Bigio, B., Nasca, C. and Khosla, C. (2023) Carnitine octanoyltransferase is important for the assimilation of exogenous acetyl-L-carnitine into acetyl-CoA in mammalian cells. The Journal of Biological Chemistry 299, 102848.10.1016/j.jbc.2022.102848CrossRefGoogle ScholarPubMed
Ishii, T., Shimpo, Y., Atsuoka, Y. and Kinoshita, K. (2000) Antiapoptotic effect of acetyl-L- carnitine and L-carnitine in primary cultured neurons. The Japanese Journal of Pharmacology 83, 119124.CrossRefGoogle ScholarPubMed
Jiang, X.D., Liu, Y., Wu, J.F., Gong, S.N., Ma, Y. and Zi, X.D. (2023) Regulation of proliferation, apoptosis, hormone secretion and gene expression by acetyl-L-carnitine in yak (Bos grunniens) granulosa cells. Theriogenology 203, 6168.10.1016/j.theriogenology.2023.03.016CrossRefGoogle ScholarPubMed
Kaderides, K., Kyriakoudi, A., Mourtzinos, I. and Goula, A. (2021) Potential of pomegranate peel extract as a natural additive in foods. Trends in Food Science & Technology 115, 380390.10.1016/j.tifs.2021.06.050CrossRefGoogle Scholar
Li, X., Wu, X., Ma, T., Zhang, Y., Sun, P., Qi, D. and Ma, H. (2023) Protective effect of L‑carnitine against oxidative stress injury in human ovarian granulosa cells. Experimental and Therapeutic Medicine 25, 161.10.3892/etm.2023.11860CrossRefGoogle ScholarPubMed
Livak, K.J. and Schmittgen, T.D. (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta C(T)) method. Methods 25, 402408.10.1006/meth.2001.1262CrossRefGoogle ScholarPubMed
Najafi, A., Asadi, E. and Benson, J.D. (2023) Ovarian tissue cryopreservation and transplantation: a review on reactive oxygen species generation and antioxidant therapy. Cell and Tissue Research 393, 401423.10.1007/s00441-023-03794-2CrossRefGoogle ScholarPubMed
Pancotto, L., Mocelin, R., Marcon, M., Herrmann, A.P. and Piato, A. (2018) Anxiolytic and anti-stress effects of acute administration of acetyl-L-carnitine in zebrafish. PeerJ 6, e5309.10.7717/peerj.5309CrossRefGoogle ScholarPubMed
Pei, J., Xiong, L., Guo, S., Wang, X., La, Y., Chu, M., Liang, C., Yan, P. and Guo, X. (2023) Single-cell transcriptomics analysis reveals a cell atlas and cell communication in yak ovary. International Journal of Molecular Sciences 24, 1839.CrossRefGoogle ScholarPubMed
Placidi, M., Di Emidio, G., Virmani, A., D’Alfonso, A., Artini, P.G., D’Alessandro, A.M. and Tatone, C. (2022) Carnitines as mitochondrial modulators of oocyte and embryo bioenergetics. Antioxidants 11, 745.CrossRefGoogle ScholarPubMed
Qian, Y., Wang, J., Ji, Z., Chen, H., He, Y., Lv, X., Zhang, Z., Li, T., Pan, T., Li, L. and Lin, M. (2021) Acetyl-L-carnitine protects adipose- derived stem cells exposed to H2O2 through regulating AMBRA1-related autophagy. Biocell 45, 189198.10.32604/biocell.2021.011827CrossRefGoogle Scholar
Qiu, M., Liu, J., Han, C., Wu, B., Yang, Z., Su, F., Quan, F. and Zhang, Y. (2014) The influence of ovarian stromal/theca cells during in vitro culture on steroidogenesis, proliferation and apoptosis of granulosa cells derived from the goat ovary. Reproduction in Domestic Animals 49, 170176.10.1111/rda.12256CrossRefGoogle ScholarPubMed
Rittié, L. (2017) Method for Picrosirius red-polarization detection of collagen fibers in tissue sections. Methods in Molecular Biology 1627, 395407.CrossRefGoogle ScholarPubMed
Shahri, P.A.K., Chiti, M.C. and Amorim, C.A. (2019) Isolation and characterization of the human ovarian cell population for transplantation into an artificial ovary. Animal Reproduction 16, 39.10.21451/1984-3143-AR2018-0140CrossRefGoogle Scholar
Shahreza, B.P., Ahmadpour, S., Almasi, M., Seyyed Hosseini, E., Akhavan Taheri, M. and Moshkdanian, G. (2023) The effect of L-carnitine on oocyte mitochondrial health and biomarkers in cyclophosphamide chemotherapeutic treatment in mice. Reproductive Toxicology 122, 108490.10.1016/j.reprotox.2023.108490CrossRefGoogle Scholar
Shenk, J.C., Liu, J., Fischbach, K., Xu, K., Puchowicz, M., Obrenovich, M.E., Gasimov, E., Alvarez, L.M., Ames, B.N., Lamanna, J.C. and Aliev, G. (2009) The effect of acetyl-L-carnitine and R-alpha-lipoic acid treatment in ApoE4 mouse as a model of human Alzheimer’s disease. Journal of the Neurological Sciences 283, 199206.10.1016/j.jns.2009.03.002CrossRefGoogle Scholar
Silva, B.R. and Silva, J.R.V. (2023) Mechanisms of action of non-enzymatic antioxidants to control oxidative stress during in vitro follicle growth, oocyte maturation, and embryo development. Anim Reprod Sci 249, 107186.10.1016/j.anireprosci.2022.107186CrossRefGoogle ScholarPubMed
Silva, B.R., Costa, F.C., De Lima Neto, M.F., Caetano Filho, F.F., de Assis, E.I.T., Aguiar, F.L.N., Silva, A.W.B., Martins, S.D., Araújo, V.R., Matos, M.H.T., Costa, J.J.N. and Silva, J.R.V. (2024) Melatonin acts through different mechanisms to control oxidative stress and primordial follicle activation and survival during in vitro culture of bovine ovarian tissue. Domest Anim Endocrinol 86,106824.10.1016/j.domaniend.2023.106824CrossRefGoogle ScholarPubMed
Silva, R.L.S.S., Barberino, R.S. and Matos, M.H.T. (2023) Impact of antioxidant supplementation during in vitro culture of ovarian preantral follicles: a review. Theriogenology 207, 110122.10.1016/j.theriogenology.2023.05.027CrossRefGoogle Scholar
Sreedhar, A., Wiese, E.K. and Hitosugi, T. (2020) Regulação enzimática e metabólica da succinilação da lisina. Genes & Doenças 7, 166171.Google Scholar
Tang, V.W. (2020) Collagen, stiffness, and adhesion: the evolutionary basis of vertebrate mechanobiology. Molecular Biology of the Cell 31, 18231834.10.1091/mbc.E19-12-0709CrossRefGoogle ScholarPubMed
Tauqir, S., Israr, M., Rauf, B., Malik, M.O., Habib, S.H., Shah, F.A., Usman, M., Raza, M.A., Shah, I., Badshah, H., Ehtesham, E. and Shah, M. (2021) Acetyl-l-carnitine ameliorates metabolic and endocrine alterations in women with PCOS: a double-blind randomized clinical trial. Adv Ther 38, 38423856.10.1007/s12325-021-01789-5CrossRefGoogle ScholarPubMed
Telfer, E.E. and Zelinski, M.B. (2013) Ovarian follicle culture: advances and challenges for human and nonhuman primates. Fertil Steril 99, 15231533.10.1016/j.fertnstert.2013.03.043CrossRefGoogle ScholarPubMed
Telfer, E.E., McLaughlin, M., Ding, C. and Thong, K.J. (2008) A two-step serum-free culture system supports development of human oocytes from primordial follicles in the presence of activin. Human Reproduction (Oxford, England) 23, 11511158.10.1093/humrep/den070CrossRefGoogle ScholarPubMed
Theocharis, A.D., Skandalis, S.S., Gialeli, C. and Karamanos, N.K. (2016) Structure of the extracellular matrix. Advanced Drug Delivery Reviews 97, 427.10.1016/j.addr.2015.11.001CrossRefGoogle Scholar
Wagner, M., Yoshihara, M., Douagi, I., Damdimopoulos, A., Panula, S., Petropoulos, S., Lu, H., Pettersson, K., Palm, K., Katayama, S., Hovatta, O., Kere, J., Lanner, F. and Damdimopoulou, P. (2020) Single-cell analysis of the human ovarian cortex identifies distinct cell populations but no oogonial stem cells. Nature Communications 11, 1147.10.1038/s41467-020-14936-3CrossRefGoogle ScholarPubMed
Wang, S., Xu, J., Zheng, J., Zhang, X., Shao, J., Zhao, L. and Hao, J. (2020) Anti-inflammatory and antioxidant effects of acetyl-l-carnitine in atherosclerotic rats. Medical Sciences Monitor 26, e920250.Google ScholarPubMed
Xu, H.Y., Yang, X.G., Lu, S.S., Liang, X.W., Lu, Y.Q., Zhang, M. and Lu, K.H. (2018) Treatment with acetyl-l- carnitine during in vitro maturation of buffalo oocytes improves oocyte quality and subsequent embryonic development. Theriogenology 118, 8089.10.1016/j.theriogenology.2018.05.033CrossRefGoogle ScholarPubMed
Zhang, Q., Wang, S.M., Yao, P.B., Zhang, L., Zhang, Y.J., Chen, R.X., Fu, Y. and Zhang, J.M. (2015) Effects of L-carnitine on follicular survival and graft function following autotransplantation of cryopreserved-thawed ovarian tissues. Cryobiology 71, 494500.10.1016/j.cryobiol.2015.04.008CrossRefGoogle ScholarPubMed
Zhang, J., Bao, Y., Zhou, X. and Zheng, L. (2019) Polycystic ovary syndrome and mitochondrial dysfunction. Reproductive Biology and Endocrinology : RB&E 17, 67.10.1186/s12958-019-0509-4CrossRefGoogle ScholarPubMed