Hostname: page-component-74d7c59bfc-nlwmm Total loading time: 0 Render date: 2026-01-30T07:51:09.840Z Has data issue: false hasContentIssue false

Tarutinoite, Ag3Pb7Bi7S19, a new member of the lillianite homologous series from the Tarutinskoe copper-skarn deposit, Southern Urals, Russia

Published online by Cambridge University Press:  20 January 2025

Anatoly V. Kasatkin*
Affiliation:
Fersman Mineralogical Museum of the Russian Academy of Sciences, Moscow, Russia
Cristian Biagioni
Affiliation:
Dipartimento di Scienze della Terra, Università di Pisa, Pisa, Italy
Fabrizio Nestola
Affiliation:
Dipartimento di Geoscienze, Università di Padova, Padova, Italy
Radek Škoda
Affiliation:
Department of Geological Sciences, Faculty of Science, Masaryk University, Brno, Czech Republic
Vladislav V. Gurzhiy
Affiliation:
Institute of Earth Sciences, St. Petersburg State University, Saint-Petersburg, Russia;
Atali A. Agakhanov
Affiliation:
Fersman Mineralogical Museum of the Russian Academy of Sciences, Moscow, Russia
Aleksey M. Kuznetsov
Affiliation:
Independent Researcher, Chelyabinsk, Russia
*
Corresponding author: Anatoly V. Kasatkin; Email: anatoly.kasatkin@gmail.com

Abstract

The new mineral tarutinoite, ideally Ag3Pb7Bi7S19, was found in a fragment of a drill core extracted at the 178.5 m level of borehole #4604 at the Tarutinskoe (Tarutino) copper-skarn deposit, Chelyabinsk Oblast, Southern Urals, Russia. It occurs as anhedral grains up to 0.10 × 0.05 mm intergrown with hessite and galena in magnetite and calcite. Tarutinoite is grey, opaque with metallic lustre, brittle tenacity and uneven fracture. No cleavage and parting are observed. The Vickers’ micro-indentation hardness (VHN, 25 g load) is 178 kg/mm2 (range 165–194, n = 4), corresponding to a Mohs’ hardness of 3.5–4, and calculated density is 7.180 g/cm3. In reflected light, tarutinoite is greyish-white, very weakly bireflectant and non-pleochroic. Under crossed polarisers the new mineral exhibits moderate anisotropy, in grey and dark grey tones with bluish tints. The reflectance values for wavelengths recommended by the Commission on Ore Mineralogy of the International Mineralogical Association are (Rmin/Rmax, %): 45.5/47.9 (470 nm), 43.5/45.0 (546 nm), 43.3/44.1 (589 nm) and 41.8/42.5 (650 nm). The chemical composition (wt.%, electron microprobe data, mean of 7 spot analyses) is Cu 0.30, Ag 8.33, Cd 0.04, Pb 37.12, Bi 37.52, S 15.15, Se 0.40, Te 0.66, total 99.52. The empirical formula calculated on the basis of 36 atoms per formula unit is (Ag3.01Cu0.18)Σ3.19(Pb6.98Cd0.01)Σ6.99Bi7.00(S18.42Se0.20Te0.20)Σ18.82. Tarutinoite is monoclinic, space group C2/m, with a = 13.5447(12), b = 4.1027(3), c = 32.481(4) Å, β = 96.433(9)°, V = 1793.6(3) Å3 and Z = 2. The strongest lines of the powder X-ray diffraction pattern [d, Å (I, %) (hkl)] are: 16.15 (48) (0 0 2), 3.407 (69) (1 1 –5), 3.328 (95) (2 0 –9), 3.042 (65) (2 0 –10), 2.941 (100) (3 1 2), 2.910 (55) (3 1 –4), 2.053 (44) (0 2 0). The crystal structure of tarutinoite was refined to R1 = 0.1349 for 2024 reflections with Fo > 4σ(Fo) and 84 refined parameters. The new mineral is the first 7,8L member of the lillianite homologous series. It is named after its type locality.

Information

Type
Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of The Mineralogical Society of the United Kingdom and Ireland.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

Footnotes

Associate Editor: Owen Missen

References

Andersson, S. and Hyde, B.G. (1974) Twinning on the unit cell level as a structure-building operation in the solid state. Journal of Solid State Chemistry, 9, 92101.10.1016/0022-4596(74)90059-0CrossRefGoogle Scholar
Berlepsch, P., Armbruster, T., Makovicky, E., Hejny, C., Topa, D. and Graeser, S. (2001) The crystal structure of (001) twinned xilingolite, Pb3Bi2S6, from Mittal-Hohten, Valais, Switzerland. The Canadian Mineralogist, 39, 16531663.10.2113/gscanmin.39.6.1653CrossRefGoogle Scholar
Biagioni, C., Bindi, L. and Moëlo, Y. (2018) Another step toward the solution of the real structure of zinkenite. Zeitschrift für Kristallographie – Crystalline Materials, 233, 269277.CrossRefGoogle Scholar
Brese, N.E. and O’Keeffe, M. (1991) Bond-valence parameters for solids. Acta Crystallographica, B47, 192197.10.1107/S0108768190011041CrossRefGoogle Scholar
Britvin, S.N., Dolivo-Dobrovolsky, D.V. and Krzhizhanovskaya, M.G. (2017) Software for processing the X-ray powder diffraction data obtained from the curved image plate detector of Rigaku RAXIS Rapid II diffractometer. Zapiski Rossiiskogo Mineralogicheskogo Obshchestva, 146, 104107 [in Russian].Google Scholar
Callegari, A.M. and Boiocchi, M. (2009) Aschamalmite (Pb6Bi2S9): crystal structure and ordering scheme for Pb and Bi atoms. Mineralogical Magazine, 73, 8394.CrossRefGoogle Scholar
Edenharter, A., Nowacki, W. and Takéuchi, Y. (1970) Verfeinerung der kristallstruktur von bournonit [(SbS3)2|CuIV2PbVIIPbVIII] und von seligmannit [(AsS3)2| CuIV2PbVIIPbVIII]. Zeitschrift für Kristallographie, 131, 397417 [in German].10.1524/zkri.1970.131.1-6.397CrossRefGoogle Scholar
Grabezhev, A.I. and Ronkin, Yu.L.(2007) Carbon, oxygen and strontium isotopes in copper-skarn deposits of the Urals. Litosphere, 4, 102114 [in Russian].Google Scholar
Grabezhev, A.I. and Shardakova, G.Yu. (2006) Ore-bearing granitoids of Uralian copper-skarn deposits: petrogeochemistry in connection with ore-metasomatic zonality features. Litosphere, 4, 6878 [in Russian].Google Scholar
Grabezhev, A.I., Belgorodsky, E.A., Sotnikov, V.I. and Gmyrya, V.G. (2002) Skarns of Tarutino skarn-porphyry copper deposit, Southern Urals. Petrology, 10, 4659 [in Russian].Google Scholar
Grabezhev, A.I., Sotnikov, V.I., Belgorodsky, E.A., Murzin, V.V. and Moloshag, V.P. (2004) Acid leaching in skarn-copper-porphyry systems: Tarutino deposit, Southern Urals. Geology of ore deposits, 46, 510523 [in Russian].Google Scholar
Grabezhev, A.I., Gmyra, V.G., Vigorova, V.G. and Palgueva, G.V. (2005) Garnets from skarns of Gumeshevskoe and Tarutinskoe skarn-copper-porphyry deposits. Bulletin of the Ural Branch of the Russian Academy of Sciences, 4, 5560 [in Russian].Google Scholar
Holland, T.J.B. and Redfern, S.A.T. (1997) Unit cell refinement from powder diffraction data: the use of regression diagnostics. Mineralogical Magazine, 61, 6577.CrossRefGoogle Scholar
Kasatkin, A.V., Biagioni, C., Nestola, F., Škoda, R., Gurzhiy, V.V., Agakhanov, A.A. and Kuznetsov, A.M. (2024) Tarutinoite, IMA 2023–122, in: CNMNC Newsletter 79. European Journal of Mineralogy, 36, 525528.Google Scholar
Makovicky, E. (2019) Algorithms for calculation of homologue order N in the homologous series of sulfosalts. European Journal of Mineralogy, 31, 8397.10.1127/ejm/2018/0030-2791CrossRefGoogle Scholar
Makovicky, E. and Karup-Møller, S. (1977a) Chemistry and crystallography of the lillianite homologous series. Part I: General properties and definitions. Neues Jahrbuch für Mineralogie, Abhandlungen, 130, 264287.Google Scholar
Makovicky, E. and Karup-Møller, S. (1977b) Chemistry and crystallography of the lillianite homologous series. Part II: Definition of new minerals: eskimoite, vikingite, ourayite and treasurite. Redefinition of schirmerite and new data on the lillianite-gustavite solid solution series. Neues Jahrbuch für Mineralogie, Abhandlungen, 131, 5682.Google Scholar
Makovicky, E. and Topa, D. (2011) The crystal structure of gustavite, PbAgBi3S6. Analysis of twinning and polytypism using the OD approach. European Journal of Mineralogy, 23, 537550.10.1127/0935-1221/2011/0023-2114CrossRefGoogle Scholar
Makovicky, E. and Topa, D. (2014) Lillianites and andorites: new life for the oldest homologous series of sulfosalts. Mineralogical Magazine, 78, 387414.10.1180/minmag.2014.078.2.11CrossRefGoogle Scholar
Makovicky, E., Mumme, W.G. and Madsen, I.C. (1992) The crystal structure of vikingite. Neues Jahrbuch für Mineralogie, Monatshefte, 1992/10, 454468.Google Scholar
Merlet, C. (1994) An Accurate Computer Correction Program for Quantitative Electron Probe Microanalysis. Microchimica Acta, 114/115, 363376.10.1007/BF01244563CrossRefGoogle Scholar
Momma, K. and Izumi, F. (2011) VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. Journal of Applied Crystallography, 44, 12721276.10.1107/S0021889811038970CrossRefGoogle Scholar
Pažout, R. (2017) Lillianite homologues from Kutná Hora ore district, Czech Republic: a case of large-scale Sb for Bi substitution. Journal of Geosciences, 62, 3757.10.3190/jgeosci.235CrossRefGoogle Scholar
Pažout, R. and Sejkora, J. (2018) Staročeskéite, Ag0.70Pb1.60(Bi1.35Sb1.35)Σ2.70S6, from Kutná Hora, Czech Republic, a new member of the lillianite homologous series. Mineralogical Magazine, 82, 9931005.10.1180/minmag.2017.081.101CrossRefGoogle Scholar
Pinto, D., Balić-Žunić, T., Garavelli, A., Makovicky, E. and Vurro, F. (2006) Comparative crystal-structure study of Ag-free lillianite and galenobismutite from Vulcano, Aeolian Islands, Italy. The Canadian Mineralogist, 44, 159175.10.2113/gscanmin.44.1.159CrossRefGoogle Scholar
Pinto, D., Balić-Žunić, T., Garavelli, A. and Vurro, F. (2011) Structure refinement of Ag-free heyrovskýite from Vulcano (Aeolian Islands, Italy). American Mineralogist, 96, 11201128.10.2138/am.2011.3635CrossRefGoogle Scholar
Sheldrick, G.M. (2015) Crystal structure refinement with SHELXL. Acta Crystallographica, C71, 38.Google Scholar
Skowron, A. and Tilley, J.D. (1990) Chemically twinned phases in the Ag2S–PbS–Bi2S3 system. Part I. Electron microscope study. Journal of Solid State Chemistry, 85, 235250.10.1016/S0022-4596(05)80080-5CrossRefGoogle Scholar
Topa, D., Makovicky, E., Zagler, G., Putz, H. and Paar, W.H. (2013) Erzwiesite, IMA 2012-082. CNMNC Newsletter No. 15, February 2013, page 11. Mineralogical Magazine, 77, 112.Google Scholar
Topa, D., Makovicky, E., Stanley, C.J. and Roberts, A.C. (2016) Oscarkempffite, Ag10Pb4(Sb17Bi9)Σ=26S48, a new Sb-Bi member of the lillianite homologous series, Mineralogical Magazine, 80, 809817.10.1180/minmag.2016.080.024CrossRefGoogle Scholar
Yang, H., Downs, R.T., Evans, S.H. and Pinch, W.W. (2013) Terrywallaceite, AgPb(Sb,Bi)3S6, isotypic with gustavite, a new mineral from Mina Herminia, Julcani Mining District, Huancavelica, Peru. American Mineralogist, 98, 13101314.10.2138/am.2013.4423CrossRefGoogle Scholar
Wilson, A.J.C. (editor) (1992) International Tables for Crystallography Volume C: Mathematical, Physical and Chemical Tables. Kluwer Academic Publishers, Dordrecht, The Netherlands.Google Scholar
Supplementary material: File

Kasatkin et al. supplementary material

Kasatkin et al. supplementary material
Download Kasatkin et al. supplementary material(File)
File 575.8 KB