Hostname: page-component-65f69f4695-pm9fr Total loading time: 0 Render date: 2025-06-27T08:17:42.030Z Has data issue: false hasContentIssue false

Chemical pregnancy in fresh and cryopreserved cycles, using day 3 (cleavage stage) and day 4 embryos (morula stage)

Published online by Cambridge University Press:  21 March 2025

Zahra Borzouie
Affiliation:
Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran Clinical Center for Infertility, Shahid Behashti Hospital, Isfahan, Iran
Akram Hosseini
Affiliation:
Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran Clinical Center for Infertility, Shahid Behashti Hospital, Isfahan, Iran
Peyman Salehi
Affiliation:
Clinical Center for Infertility, Shahid Behashti Hospital, Isfahan, Iran Department of Urology of the Infertility, Milad Hospital, Isfahan, Iran
Hatav Ghasemi Tehrani
Affiliation:
Department of Urology of the Infertility, Milad Hospital, Isfahan, Iran Department of Obstetrics & Gyn, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
Elham Naghshineh
Affiliation:
Department of Urology of the Infertility, Milad Hospital, Isfahan, Iran Department of Obstetrics & Gyn, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
Aliakbar Taherian
Affiliation:
Anatomical Sciences Research Center, Kashan University of Medical Sciences, Kashan, Iran
Mahboubeh Vatanparast*
Affiliation:
Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
*
Corresponding author: Mahboubeh Vatanparast; Email: mahboob_vatan@yahoo.com

Summary

With the advancement in the embryo culture media, which supports nutrient requirements of embryos up to 5 to 6 days, there’s a chance to select more viable embryos, which are more likely to result in pregnancy, compared to earlier stages. Also, there is a controversy regarding the frozen embryo transfer compared to the fresh type. To compare the chemical pregnancy rates between fresh embryo transfer (ET), and frozen embryo transfer (FET), on day 3 (cleavage), and day 4 (morula) of development. In this retrospective study, data of 242 fresh and 758 frozen embryo transfer cycles were obtained in one infertility center in Isfahan, Iran. The study’s groups were assigned based on the day of fresh or frozen embryo transfer (day 3, or day 4 embryos) and the embryo grading. Chemical pregnancy was the main outcome measurement (implantation rates). The chemical pregnancy rate was higher in the good quality frozen embryo day 3 and transfer on day 4 group (40.1%). This rate was near the results of transferring the good quality frozen embryo on day 4 (39.2 %). There was no significant difference in the chemical pregnancy rate related to the number of transferred embryos (p = 0.55). The higher PRs, when the embryos were transferred on day 4, provided further support for the morula stage embryo transfer, possibly because of better synchrony with the endometrium. It is concluded that morula/compact embryos are good candidates for embryo transfer, which simultaneously reduces the number of transferred embryos.

Information

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Alpha Scientists in Reproductive Medicine and ESHRE Special Interest Group of Embryology. (2011) The Istanbul consensus workshop on embryo assessment: proceedings of an expert meeting. Human Reproduction 26(6), 12701283.CrossRefGoogle Scholar
Adamson, G.D. and Norman, R.J. (2020) Why are multiple pregnancy rates and single embryo transfer rates so different globally, and what do we do about it? Fertility and Sterility 114(4), 680689. https://doi.org/10.1016/j.fertnstert.2020.09.003.Google Scholar
Blake, D.A., Proctor, M., Johnson, N., Olive, D., Farquhar, C.M. and Lamberts, Q. (2005) Cleavage stage versus blastocyst stage embryo transfer in assisted conception. Cochrane Database of Systematic Reviews 4, CD002118.CrossRefGoogle Scholar
Castelló, D., Motato, Y., Basile, N., Remohí, J., Espejo-Catena, M. and Meseguer, M. (2016) How much have we learned from time-lapse in clinical IVF? Mhr: Basic Science of Reproductive Medicine 22(10), 719727.Google ScholarPubMed
Coticchio, G., Lagalla, C., Sturmey, R., Pennetta, F. and Borini, A. (2019) The enigmatic morula: mechanisms of development, cell fate determination, self-correction and implications for ART. Human Reproduction Update 25(4), 422438.Google ScholarPubMed
Cruz, M., Garrido, N., Herrero, J., Pérez-Cano, I., Muñoz, M. and Meseguer, M. (2012) Timing of cell division in human cleavage-stage embryos is linked with blastocyst formation and quality. Reproductive Biomedicine Online 25(4), 371381.CrossRefGoogle Scholar
Cutting, R. (2018) Single embryo transfer for all. Best Practice & Research Clinical Obstetrics & Gynaecology 53, 3037. https://doi.org/10.1016/j.bpobgyn.2018.07.001.Google ScholarPubMed
De Geyter, C., Calhaz-Jorge, C., Kupka, M.S., Wyns, C., Mocanu, E., Motrenko, T., Scaravelli, G., Smeenk, J., Vidakovic, S. and Goossens, V. (2020) ART in Europe, 2015: results generated from European registries by ESHRE. Human Reproduction Open 2020(1), hoz038.CrossRefGoogle ScholarPubMed
Ebner, T., Oppelt, P., Radler, E., Allerstorfer, C., Habelsberger, A., Mayer, R. and Shebl, O. (2017) Morphokinetics of vitrified and warmed blastocysts predicts implantation potential. Journal of Assisted Reproduction and Genetics 34, 239244.Google ScholarPubMed
Fenwick, J., Platteau, P., Murdoch, A.P. and Herbert, M. (2002) Time from insemination to first cleavage predicts developmental competence of human preimplantation embryos in vitro. Human Reproduction 17(2), 407412. https://doi.org/10.1093/humrep/17.2.407.Google ScholarPubMed
Fragouli, E. and Wells, D. (2011) Aneuploidy in the human blastocyst. Cytogenetic and Genome Research 133(2-4), 149159.CrossRefGoogle ScholarPubMed
Glujovsky, D., Retamar, A.M.Q., Sedo, C.R.A., Ciapponi, A., Cornelisse, S. and Blake, D. (2022) Cleavage-stage versus blastocyst-stage embryo transfer in assisted reproductive technology. Cochrane Database of Systematic Reviews 5, CD002118.Google Scholar
Goszczynski, D.E., Tinetti, P.S., Choi, Y.H., Hinrichs, K. and Ross, P.J. (2021) Genome activation in equine in vitro–produced embryos. Biology of Reproduction 106(1), 6682. https://doi.org/10.1093/biolre/ioab173.Google Scholar
Haaf, T. (2006) Methylation dynamics in the early mammalian embryo: implications of genome reprogramming defects for development. DNA Methylation: Development, Genetic Disease and Cancer 310, 1322.Google ScholarPubMed
Hatırnaz, Ş. and Pektaş, M.K. (2017) Day 3 embryo transfer versus day 5 blastocyst transfers: a prospective randomized controlled trial. Turkish Journal of Obstetrics and Gynecology 14(2), 82.CrossRefGoogle ScholarPubMed
Healy, M.W., Patounakis, G., Connell, M.T., Devine, K., DeCherney, A.H., Levy, M.J. and Hill, M.J. (2016) Does a frozen embryo transfer ameliorate the effect of elevated progesterone seen in fresh transfer cycles? Fertility and Sterility 105(1), 9399.e91. https://doi.org/10.1016/j.fertnstert.2015.09.015.Google ScholarPubMed
Kaartinen, N., Kananen, K., Tomás, C. and Tinkanen, H. (2017) Day 4 embryos should not be underestimated in IVF. Gynecol Reproduct Endocrinol-UK 1(1), 3541.Google Scholar
Kovacs, P. and Matyas, S. (2021) Choosing an Embryo for Transfer. Assisted Reproduction Techniques: Challenges and Management Options, 2nd Edn. John Wiley & Sons Ltd, pp. 484491.Google Scholar
Lechniak, D., Pers-Kamczyc, E. and Pawlak, P. (2008) Timing of the first zygotic cleavage as a marker of developmental potential of mammalian embryos. Reproductive Biology 8(1), 2342.Google ScholarPubMed
Li, D., Parmegiani, L., Yang, D., Vajta, G. and Li, R. (2023) Expert consensus on the morphological evaluation of human cleavage-stage embryos and blastocysts. Chinese Medical Journal 136(9), 10091011.Google ScholarPubMed
Li, R-S., Hwu, Y-M., Lee, R.K-K., Li, S-H. and Lin, M-H. (2018) Day 4 good morula embryo transfer provided compatible live birth rate with day 5 blastocyst embryo in fresh IVF/ET cycles. Taiwanese Journal of Obstetrics and Gynecology 57(1), 5257. https://doi.org/10.1016/j.tjog.2017.12.008.CrossRefGoogle ScholarPubMed
Ma, S., Peng, Y., Hu, L., Wang, X., Xiong, Y., Tang, Y., Tan, J. and Gong, F. (2022) Comparisons of benefits and risks of single embryo transfer versus double embryo transfer: a systematic review and meta-analysis. Reproductive Biology and Endocrinology 20(1), 20. https://doi.org/10.1186/s12958-022-00899-1.CrossRefGoogle ScholarPubMed
Maheshwari, A., Hamilton, M. and Bhattacharya, S. (2016) Should we be promoting embryo transfer at blastocyst stage? Reproductive BioMedicine Online 32(2), 142146. https://doi.org/10.1016/j.rbmo.2015.09.016.Google ScholarPubMed
Martin, P.M. and Welch, H.G. (1998) Probabilities for singleton and multiple pregnancies after in vitro fertilization. Fertility and Sterility 70(3), 478481.CrossRefGoogle ScholarPubMed
Matorras, R., Pijoan, J.I., Perez-Ruiz, I., Lainz, L., Malaina, I. and Borjaba, S. (2021) Meta-analysis of the embryo freezing transfer interval. Reproductive Medicine and Biology 20(2), 144158.CrossRefGoogle ScholarPubMed
Ozgur, K., Berkkanoglu, M., Bulut, H., Humaidan, P. and Coetzee, K. (2015) Perinatal outcomes after fresh versus vitrified-warmed blastocyst transfer: retrospective analysis. Fertility and Sterility 104(4), 899907. e893.CrossRefGoogle ScholarPubMed
Ozturk, A.E., Korkmaz, O., Bucak, M.N., Kalyan, E.Y. and Topraggaleh, T.R. (2023) An overview of Intracytoplasmic Sperm Injection (ICSI): its development and popularity. https://doi.org/10.58830/ozgur.pub124.c546.CrossRefGoogle Scholar
Pantos, K., Makrakis, E., Chronopoulou, M., Biba, M., Perdikaris, A. and Dafereras, A. (2008) Day 4 versus day 3 embryo transfer: a prospective study of clinical outcomes. Fertility and Sterility 89(3), 573577. https://doi.org/10.1016/j.fertnstert.2007.03.056.CrossRefGoogle ScholarPubMed
Porokh, V., Kyjovska, D., Martonova, M., Klenkova, T., Kuruczova, D., Stepanova, R., Otevrel, P., Kloudova, S. and Holubcova, Z. (2023) P-252 A roadmap to normal human embryo development–a timelapse study of embryos resulting in the live birth. Human Reproduction 38(1), dead093. 610.CrossRefGoogle Scholar
Poulsen, V., Ingerslev, H.J. and Kirkegaard, K. (2017) Elective embryo transfers on Day 6 reduce implantation compared with transfers on Day 5. Human Reproduction 32(6), 12381243. https://doi.org/10.1093/humrep/dex059.Google ScholarPubMed
Reik, W., Dean, W. and Walter, J. (2001) Epigenetic reprogramming in mammalian development. Science 293(5532), 10891093.CrossRefGoogle ScholarPubMed
Roque, M., Haahr, T., Geber, S., Esteves, S.C. and Humaidan, P. (2019) Fresh versus elective frozen embryo transfer in IVF/ICSI cycles: a systematic review and meta-analysis of reproductive outcomes. Human Reproduction Update 25(1), 214.CrossRefGoogle ScholarPubMed
Salumets, A., Tuuri, T., Mäkinen, S., Vilska, S., Husu, L., Tainio, R. and Suikkari, A.M. (2003) Effect of developmental stage of embryo at freezing on pregnancy outcome of frozen–thawed embryo transfer. Human Reproduction 18(9), 18901895. https://doi.org/10.1093/humrep/deg339.Google ScholarPubMed
Sanchez, T., Seidler, E.A., Gardner, D.K., Needleman, D. and Sakkas, D. (2017) Will noninvasive methods surpass invasive for assessing gametes and embryos? Fertility and Sterility 108(5), 730737.CrossRefGoogle ScholarPubMed
Shapiro, B.S., Daneshmand, S.T., Garner, F.C., Aguirre, M., Hudson, C. and Thomas, S. (2011) Evidence of impaired endometrial receptivity after ovarian stimulation for in vitro fertilization: a prospective randomized trial comparing fresh and frozen–thawed embryo transfer in normal responders. Fertility and Sterility 96(2), 344348.CrossRefGoogle ScholarPubMed
Shapiro, B.S., Daneshmand, S.T., Garner, F.C., Aguirre, M. and Ross, R. (2008) Contrasting patterns in in vitro fertilization pregnancy rates among fresh autologous, fresh oocyte donor, and cryopreserved cycles with the use of day 5 or day 6 blastocysts may reflect differences in embryo-endometrium synchrony. Fertility and Sterility 89(1), 2026.CrossRefGoogle ScholarPubMed
Simionescu, G., Maftei, R., Anton, E., Valeanu, S. and Doroftei, B. (2016) Time-lapse microscopy role in improving the outcome of IVF/ICSI cycles by monitoring and selection of early embRYO. Management Intercultural 18(3), 345.Google Scholar
Tao, J., Tamis, R., Fink, K., Williams, B., Nelson-White, T. and Craig, R. (2002a) The neglected morula/compact stage embryo transfer. Human Reproduction (Oxford, England) 17(6), 15131518. https://doi.org/10.1093/humrep/17.6.1513.CrossRefGoogle ScholarPubMed
Tao, J., Tamis, R., Fink, K., Williams, B., Nelson-White, T. and Craig, R. (2002b) The neglected morula/compact stage embryo transfer. Human Reproduction 17(6), 15131518.CrossRefGoogle ScholarPubMed
Vanderzwalmen, P., Bertin, G., Debauche, C., Standaert, V., van Roosendaal, E., Vandervorst, M., Bollen, N., Zech, H., Mukaida, T., Takahashi, K. and Schoysman, R. (2002) Births after vitrification at morula and blastocyst stages: effect of artificial reduction of the blastocoelic cavity before vitrification. Human Reproduction 17(3), 744751. https://doi.org/10.1093/humrep/17.3.744.CrossRefGoogle ScholarPubMed
Wang, N., Zhao, X., Ma, M., Zhu, Q. and Wang, Y. (2021) Effect of day 3 and day 5/6 embryo quality on the reproductive outcomes in the single vitrified embryo transfer cycles. Frontiers in Endocrinology 12, 641623.CrossRefGoogle ScholarPubMed
Wirleitner, B., Schuff, M., Stecher, A., Murtinger, M. and Vanderzwalmen, P. (2016) Pregnancy and birth outcomes following fresh or vitrified embryo transfer according to blastocyst morphology and expansion stage, and culturing strategy for delayed development. Human Reproduction 31(8), 16851695. https://doi.org/10.1093/humrep/dew127.CrossRefGoogle ScholarPubMed
Yang, L., Peavey, M., Kaskar, K., Chappell, N., Zhu, L., Devlin, D., Valdes, C., Schutt, A., Woodard, T. and Zarutskie, P. (2022) Development of a dynamic machine learning algorithm to predict clinical pregnancy and live birth rate with embryo morphokinetics. F&S Reports 3(2), 116123.Google ScholarPubMed
Zhang, J., Wang, C., Zhang, H. and Zhou, Y. (2021) Sequential cleavage and blastocyst embryo transfer and IVF outcomes: a systematic review. Reproductive Biology and Endocrinology 19(1), 142. https://doi.org/10.1186/s12958-021-00824-y.Google ScholarPubMed
Zhang, W., Xiao, X., Zhang, J., Wang, W., Wu, J., Peng, L. and Wang, X. (2018) Clinical outcomes of frozen embryo versus fresh embryo transfer following in vitro fertilization: a meta-analysis of randomized controlled trials. Archives of Gynecology and Obstetrics 298(2), 259272. https://doi.org/10.1007/s00404-018-4786-5.CrossRefGoogle ScholarPubMed