We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We construct an fpqc gerbe $\mathcal {E}_{\dot {V}}$ over a global function field F such that for a connected reductive group G over F with finite central subgroup Z, the set of $G_{\mathcal {E}_{\dot {V}}}$-torsors contains a subset $H^{1}(\mathcal {E}_{\dot {V}}, Z \to G)$ which allows one to define a global notion of (Z-)rigid inner forms. There is a localization map $H^{1}(\mathcal {E}_{\dot {V}}, Z \to G) \to H^{1}(\mathcal {E}_{v}, Z \to G)$, where the latter parametrizes local rigid inner forms (cf. [8, 6]) which allows us to organize local rigid inner forms across all places v into coherent families. Doing so enables a construction of (conjectural) global L-packets and a conjectural formula for the multiplicity of an automorphic representation $\pi $ in the discrete spectrum of G in terms of these L-packets. We also show that, for a connected reductive group G over a global function field F, the adelic transfer factor $\Delta _{\mathbb {A}}$ for the ring of adeles $\mathbb {A}$ of F serving an endoscopic datum for G decomposes as the product of the normalized local transfer factors from [6].
In this paper, we define compact open subgroups of quasi-split even unitary groups for each even non-negative integer and establish the theory of local newforms for irreducible tempered generic representations with a certain condition on the central characters. To do this, we use the local Gan–Gross–Prasad conjecture, the local Rankin–Selberg integrals and the local theta correspondence.
Without using the $p$-adic Langlands correspondence, we prove that for many finite-length smooth representations of $\mathrm {GL}_2(\mathbf {Q}_p)$ on $p$-torsion modules the $\mathrm {GL}_2(\mathbf {Q}_p)$-linear morphisms coincide with the morphisms that are linear for the normalizer of a parahoric subgroup. We identify this subgroup to be the Iwahori subgroup in the supersingular case, and $\mathrm {GL}_2(\mathbf {Z}_p)$ in the principal series case. As an application, we relate the action of parahoric subgroups to the action of the inertia group of $\mathrm {Gal}(\overline {\mathbf {Q}}_p/\mathbf {Q}_p)$, and we prove that if an irreducible Banach space representation $\Pi$ of $\mathrm {GL}_2(\mathbf {Q}_p)$ has infinite $\mathrm {GL}_2(\mathbf {Z}_p)$-length, then a twist of $\Pi$ has locally algebraic vectors. This answers a question of Dospinescu. We make the simplifying assumption that $p > 3$ and that all our representations are generic.
For a connected reductive group G over a nonarchimedean local field F of positive characteristic, Genestier-Lafforgue and Fargues-Scholze have attached a semisimple parameter ${\mathcal {L}}^{ss}(\pi )$ to each irreducible representation $\pi $. Our first result shows that the Genestier-Lafforgue parameter of a tempered $\pi $ can be uniquely refined to a tempered L-parameter ${\mathcal {L}}(\pi )$, thus giving the unique local Langlands correspondence which is compatible with the Genestier-Lafforgue construction. Our second result establishes ramification properties of ${\mathcal {L}}^{ss}(\pi )$ for unramified G and supercuspidal $\pi $ constructed by induction from an open compact (modulo center) subgroup. If ${\mathcal {L}}^{ss}(\pi )$ is pure in an appropriate sense, we show that ${\mathcal {L}}^{ss}(\pi )$ is ramified (unless G is a torus). If the inducing subgroup is sufficiently small in a precise sense, we show $\mathcal {L}^{ss}(\pi )$ is wildly ramified. The proofs are via global arguments, involving the construction of Poincaré series with strict control on ramification when the base curve is ${\mathbb {P}}^1$ and a simple application of Deligne’s Weil II.
Let $G$ be a split semisimple group over a global function field $K$. Given a cuspidal automorphic representation $\Pi$ of $G$ satisfying a technical hypothesis, we prove that for almost all primes $\ell$, there is a cyclic base change lifting of $\Pi$ along any $\mathbb {Z}/\ell \mathbb {Z}$-extension of $K$. Our proof does not rely on any trace formulas; instead it is based on using modularity lifting theorems, together with a Smith theory argument, to obtain base change for residual representations. As an application, we also prove that for any split semisimple group $G$ over a local function field $F$, and almost all primes $\ell$, any irreducible admissible representation of $G(F)$ admits a base change along any $\mathbb {Z}/\ell \mathbb {Z}$-extension of $F$. Finally, we characterize local base change more explicitly for a class of toral representations considered in work of Chan and Oi.
Lafforgue and Genestier-Lafforgue have constructed the global and (semisimplified) local Langlands correspondences for arbitrary reductive groups over function fields. We establish various properties of these correspondences regarding functoriality for cyclic base change: For $\mathbf {Z}/p\mathbf {Z}$-extensions of global function fields, we prove the existence of base change for mod p automorphic forms on arbitrary reductive groups. For $\mathbf {Z}/p\mathbf {Z}$-extensions of local function fields, we construct a base change homomorphism for the mod p Bernstein center of any reductive group. We then use this to prove existence of local base change for mod p irreducible representation along $\mathbf {Z}/p\mathbf {Z}$-extensions, and that Tate cohomology realizes base change descent, verifying a function field version of a conjecture of Treumann-Venkatesh.
The proofs are based on equivariant localization arguments for the moduli spaces of shtukas. They also draw upon new tools from modular representation theory, including parity sheaves and Smith-Treumann theory. In particular, we use these to establish a categorification of the base change homomorphism for mod p spherical Hecke algebras, in a joint appendix with Gus Lonergan.
We state a conjecture that relates the derived category of smooth representations of a $p$-adic split reductive group with the derived category of (quasi-)coherent sheaves on a stack of L-parameters. We investigate the conjecture in the case of the principal block of ${\rm GL}_n$ by showing that the functor should be given by the derived tensor product with the family of representations interpolating the modified Langlands correspondence over the stack of L-parameters that is suggested by the work of Helm and of Emerton and Helm.
Let F be a finite extension of ${\mathbb Q}_p$. Let $\Omega$ be the Drinfeld upper half plane, and $\Sigma^1$ the first Drinfeld covering of $\Omega$. We study the affinoid open subset $\Sigma^1_v$ of $\Sigma^1$ above a vertex of the Bruhat–Tits tree for $\text{GL}_2(F)$. Our main result is that $\text{Pic}\!\left(\Sigma^1_v\right)[p] = 0$, which we establish by showing that $\text{Pic}({\mathbf Y})[p] = 0$ for ${\mathbf Y}$ the Deligne–Lusztig variety of $\text{SL}_2\!\left({\mathbb F}_q\right)$. One formal consequence is a description of the representation $H^1_{{\acute{\text{e}}\text{t}}}\!\left(\Sigma^1_v, {\mathbb Z}_p(1)\right)$ of $\text{GL}_2(\mathcal{O}_F)$ as the p-adic completion of $\mathcal{O}\!\left(\Sigma^1_v\right)^\times$.
In this paper, we give an explicit computable algorithm for the Zelevinsky–Aubert duals of irreducible representations of $p$-adic symplectic and odd special orthogonal groups. To do this, we establish explicit formulas for certain derivatives and socles. We also give a combinatorial criterion for the irreducibility of certain parabolically induced representations.
Kottwitz’s conjecture describes the contribution of a supercuspidal representation to the cohomology of a local Shimura variety in terms of the local Langlands correspondence. A natural extension of this conjecture concerns Scholze’s more general spaces of local shtukas. Using a new Lefschetz–Verdier trace formula for v-stacks, we prove the extended conjecture, disregarding the action of the Weil group, and modulo a virtual representation whose character vanishes on the locus of elliptic elements. As an application, we show that, for an irreducible smooth representation of an inner form of
$\operatorname {\mathrm {GL}}_n$
, the L-parameter constructed by Fargues–Scholze agrees with the usual semisimplified parameter arising from local Langlands.
We prove some qualitative results about the p-adic Jacquet–Langlands correspondence defined by Scholze, in the
$\operatorname {\mathrm {GL}}_2(\mathbb{Q}_p )$
residually reducible case, using a vanishing theorem proved by Judith Ludwig. In particular, we show that in the cases under consideration, the global p-adic Jacquet–Langlands correspondence can also deal with automorphic forms with principal series representations at p in a nontrivial way, unlike its classical counterpart.
We prove a local–global compatibility result in the mod $p$ Langlands program for $\mathrm {GL}_2(\mathbf {Q}_{p^f})$. Namely, given a global residual representation $\bar {r}$ appearing in the mod $p$ cohomology of a Shimura curve that is sufficiently generic at $p$ and satisfies a Taylor–Wiles hypothesis, we prove that the diagram occurring in the corresponding Hecke eigenspace of mod $p$ completed cohomology is determined by the restrictions of $\bar {r}$ to decomposition groups at $p$. If these restrictions are moreover semisimple, we show that the $(\varphi ,\Gamma )$-modules attached to this diagram by Breuil give, under Fontaine's equivalence, the tensor inductions of the duals of the restrictions of $\bar {r}$ to decomposition groups at $p$.
Let G be a reductive p-adic group which splits over an unramified extension of the ground field. Hiraga, Ichino and Ikeda [24] conjectured that the formal degree of a square-integrable G-representation
$\pi $
can be expressed in terms of the adjoint
$\gamma $
-factor of the enhanced L-parameter of
$\pi $
. A similar conjecture was posed for the Plancherel densities of tempered irreducible G-representations.
We prove these conjectures for unipotent G-representations. We also derive explicit formulas for the involved adjoint
$\gamma $
-factors.
Let $F$ be a $p$-adic field and choose $k$ an algebraic closure of $\mathbb{F}_{\ell }$, with $\ell$ different from $p$. We define “nilpotent lifts” of irreducible generic $k$-representations of $GL_{n}(F)$, which take coefficients in Artin local $k$-algebras. We show that an irreducible generic $\ell$-modular representation $\unicode[STIX]{x1D70B}$ of $GL_{n}(F)$ is uniquely determined by its collection of Rankin–Selberg gamma factors $\unicode[STIX]{x1D6FE}(\unicode[STIX]{x1D70B}\times \widetilde{\unicode[STIX]{x1D70F}},X,\unicode[STIX]{x1D713})$ as $\widetilde{\unicode[STIX]{x1D70F}}$ varies over nilpotent lifts of irreducible generic $k$-representations $\unicode[STIX]{x1D70F}$ of $GL_{t}(F)$ for $t=1,\ldots ,\lfloor \frac{n}{2}\rfloor$. This gives a characterization of the mod-$\ell$ local Langlands correspondence in terms of gamma factors, assuming it can be extended to a surjective local Langlands correspondence on nilpotent lifts.
Let $F$ be a non-Archimedean locally compact field of residual characteristic $p$ with Weil group ${\mathcal{W}}_{F}$. Let $\unicode[STIX]{x1D70E}$ be an irreducible smooth complex representation of ${\mathcal{W}}_{F}$, realized as the Langlands parameter of an irreducible cuspidal representation $\unicode[STIX]{x1D70B}$ of a general linear group over $F$. In an earlier paper we showed that the ramification structure of $\unicode[STIX]{x1D70E}$ is determined by the fine structure of the endo-class $\unicode[STIX]{x1D6E9}$ of the simple character contained in $\unicode[STIX]{x1D70B}$, in the sense of Bushnell and Kutzko. The connection is made via the Herbrand function $\unicode[STIX]{x1D6F9}_{\unicode[STIX]{x1D6E9}}$ of $\unicode[STIX]{x1D6E9}$. In this paper we concentrate on the fundamental Carayol case in which $\unicode[STIX]{x1D70E}$ is totally wildly ramified with Swan exponent not divisible by $p$. We show that, for such $\unicode[STIX]{x1D70E}$, the associated Herbrand function satisfies a certain functional equation, and that this property essentially characterizes this class of representations. We calculate $\unicode[STIX]{x1D6F9}_{\unicode[STIX]{x1D6E9}}$ explicitly, in terms of a classical Herbrand function arising naturally from the classification of simple characters. We describe exactly the class of functions arising as Herbrand functions $\unicode[STIX]{x1D6F9}_{\unicode[STIX]{x1D6EF}}$, as $\unicode[STIX]{x1D6EF}$ varies over the set of totally wild endo-classes of Carayol type. In a separate argument, we derive a complete description of the restriction of $\unicode[STIX]{x1D70E}$ to any ramification subgroup and hence a detailed interpretation of the Herbrand function. This gives concrete information concerning the Langlands correspondence.
We show that the Galois cohomology groups of $p$-adic representations of a direct power of $\operatorname{Gal}(\overline{\mathbb{Q}_{p}}/\mathbb{Q}_{p})$ can be computed via the generalization of Herr’s complex to multivariable $(\unicode[STIX]{x1D711},\unicode[STIX]{x1D6E4})$-modules. Using Tate duality and a pairing for multivariable $(\unicode[STIX]{x1D711},\unicode[STIX]{x1D6E4})$-modules we extend this to analogues of the Iwasawa cohomology. We show that all $p$-adic representations of a direct power of $\operatorname{Gal}(\overline{\mathbb{Q}_{p}}/\mathbb{Q}_{p})$ are overconvergent and, moreover, passing to overconvergent multivariable $(\unicode[STIX]{x1D711},\unicode[STIX]{x1D6E4})$-modules is an equivalence of categories. Finally, we prove that the overconvergent Herr complex also computes the Galois cohomology groups.
We present a new construction of the $p$-adic local Langlands correspondence for $\operatorname{GL}_{2}(\mathbb{Q}_{p})$ via the patching method of Taylor–Wiles and Kisin. This construction sheds light on the relationship between the various other approaches to both the local and the global aspects of the $p$-adic Langlands program; in particular, it gives a new proof of many cases of the second author’s local–global compatibility theorem and relaxes a hypothesis on the local mod $p$ representation in that theorem.
Suppose that $F/F^{+}$ is a CM extension of number fields in which the prime $p$ splits completely and every other prime is unramified. Fix a place $w|p$ of $F$. Suppose that $\overline{r}:\operatorname{Gal}(\overline{F}/F)\rightarrow \text{GL}_{3}(\overline{\mathbb{F}}_{p})$ is a continuous irreducible Galois representation such that $\overline{r}|_{\operatorname{Gal}(\overline{F}_{w}/F_{w})}$ is upper-triangular, maximally non-split, and generic. If $\overline{r}$ is automorphic, and some suitable technical conditions hold, we show that $\overline{r}|_{\operatorname{Gal}(\overline{F}_{w}/F_{w})}$ can be recovered from the $\text{GL}_{3}(F_{w})$-action on a space of mod $p$ automorphic forms on a compact unitary group. On the way we prove results about weights in Serre’s conjecture for $\overline{r}$, show the existence of an ordinary lifting of $\overline{r}$, and prove the freeness of certain Taylor–Wiles patched modules in this context. We also show the existence of many Galois representations $\overline{r}$ to which our main theorem applies.
Let $k$ be a finite extension of $\mathbb{Q}_{p}$, let ${\mathcal{G}}$ be an absolutely simple split reductive group over $k$, and let $K$ be a maximal unramified extension of $k$. To each point in the Bruhat–Tits building of ${\mathcal{G}}_{K}$, Moy and Prasad have attached a filtration of ${\mathcal{G}}(K)$ by bounded subgroups. In this paper we give necessary and sufficient conditions for the dual of the first Moy–Prasad filtration quotient to contain stable vectors for the action of the reductive quotient. Our work extends earlier results by Reeder and Yu, who gave a classification in the case when $p$ is sufficiently large. By passing to a finite unramified extension of $k$ if necessary, we obtain new supercuspidal representations of ${\mathcal{G}}(k)$.
Suppose that $G$ is a connected reductive algebraic group defined over $\mathbf{R}$, $G(\mathbf{R})$ is its group of real points, ${\it\theta}$ is an automorphism of $G$, and ${\it\omega}$ is a quasicharacter of $G(\mathbf{R})$. Kottwitz and Shelstad defined endoscopic data associated to $(G,{\it\theta},{\it\omega})$, and conjectured a matching of orbital integrals between functions on $G(\mathbf{R})$ and its endoscopic groups. This matching has been proved by Shelstad, and it yields a dual map on stable distributions. We express the values of this dual map on stable tempered characters as a linear combination of twisted characters, under some additional hypotheses on $G$ and ${\it\theta}$.