We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We extend the definition of the X-Rokhlin property to countable discrete groups and prove some permanence properties. If the action of a countable discrete group on X is free and minimal and the action of this group on the separable simple $C^*$-algebra has the X-Rokhlin property, then the reduced crossed product is simple.
We provide a characterization of equivariant Fock covariant injective representations for product systems. We show that this characterization coincides with Nica covariance for compactly aligned product systems over right least common multiple semigroups of Kwaśniewski and Larsen and with the Toeplitz representations of a discrete monoid of Laca and Sehnem. By combining with the framework established by Katsoulis and Ramsey, we resolve the reduced Hao–Ng isomorphism problem for generalized gauge actions by discrete groups.
Let $\Omega $ be a compact subset of $\mathbb {C}$ and let A be a unital simple, separable $C^*$-algebra with stable rank one, real rank zero, and strict comparison. We show that, given a Cu-morphism ${\alpha :\mathrm { Cu}(C(\Omega ))\to \mathrm {Cu}(A)}$ with , there exists a homomorphism $\phi : C(\Omega )\to A$ such that $\mathrm {Cu}(\phi )=\alpha $. Moreover, if $K_1(A)$ is trivial, then $\phi $ is unique up to approximate unitary equivalence. We also give classification results for maps from a large class of $C^*$-algebras to A in terms of the Cuntz semigroup.
We write arbitrary separable nuclear $\mathrm {C}^*$-algebras as limits of inductive systems of finite-dimensional $\mathrm {C}^*$-algebras with completely positive connecting maps. The characteristic feature of such ${\mathrm {CPC}^*}$-systems is that the maps become more and more orthogonality preserving. This condition makes it possible to equip the limit, a priori only an operator space, with a multiplication turning it into a $\mathrm {C}^*$-algebra. Our concept generalizes the NF systems of Blackadar and Kirchberg beyond the quasidiagonal case.
The concept of stability has proved very useful in the field of Banach space geometry. In this note, we introduce and study a corresponding concept in the setting of Banach algebras, which we call multiplicative stability. As we shall prove, various interesting examples of Banach algebras are multiplicatively unstable, and hence unstable in the model-theoretic sense. The examples include Fourier algebras over noncompact amenable groups, $C^*$-algebras and the measure algebra of an infinite compact group.
We prove that a C$^*$-algebra A has uniform property $\Gamma $ if the set of extremal tracial states, $\partial _e T(A)$, is a non-empty compact space of finite covering dimension and for each $\tau \in \partial _e T(A)$, the von Neumann algebra $\pi _\tau (A)"$ arising from the GNS representation has property $\Gamma $.
Inspired by work of Szymik and Wahl on the homology of Higman–Thompson groups, we establish a general connection between ample groupoids, topological full groups, algebraic K-theory spectra and infinite loop spaces, based on the construction of small permutative categories of compact open bisections. This allows us to analyse homological invariants of topological full groups in terms of homology for ample groupoids.
Applications include complete rational computations, general vanishing and acyclicity results for group homology of topological full groups as well as a proof of Matui’s AH-conjecture for all minimal, ample groupoids with comparison.
In this article, it is shown that the lattice of C$^*$-covers of an operator algebra does not contain enough information to distinguish operator algebras up to completely isometric isomorphism. In addition, four natural equivalences of the lattice of C$^*$-covers are developed and proven to be distinct. The lattice of C$^*$-covers of direct sums and tensor products are studied. Along the way key examples are found of operator algebras, each of which generates exactly n C$^*$-algebras up to $*$-isomorphism, and a simple operator algebra that is not similar to a C$^*$-algebra.
Given a full right-Hilbert $\mathrm {C}^{*}$-module $\mathbf {X}$ over a $\mathrm {C}^{*}$-algebra A, the set $\mathbb {K}_{A}(\mathbf {X})$ of A-compact operators on $\mathbf {X}$ is the (up to isomorphism) unique $\mathrm {C}^{*}$-algebra that is strongly Morita equivalent to the coefficient algebra A via $\mathbf {X}$. As a bimodule, $\mathbb {K}_{A}(\mathbf {X})$ can also be thought of as the balanced tensor product $\mathbf {X}\otimes _{A} \mathbf {X}^{\mathrm {op}}$, and so the latter naturally becomes a $\mathrm {C}^{*}$-algebra. We generalize both of these facts to the world of Fell bundles over groupoids: Suppose $\mathscr {B}$ is a Fell bundle over a groupoid $\mathcal {H}$ and $\mathscr {M}$ is an upper semi-continuous Banach bundle over a principal $\mathcal {H}$-space X. If $\mathscr {M}$ carries a right-action of $\mathscr {B}$ and a sufficiently nice $\mathscr {B}$-valued inner product, then its imprimitivity Fell bundle$\mathbb {K}_{\mathscr {B}}(\mathscr {M})=\mathscr {M}\otimes _{\mathscr {B}} \mathscr {M}^{\mathrm {op}}$ is a Fell bundle over the imprimitivity groupoid of X, and it is the unique Fell bundle that is equivalent to $\mathscr {B}$ via $\mathscr {M}$. We show that $\mathbb {K}_{\mathscr {B}}(\mathscr {M})$ generalizes the “higher order” compact operators of Abadie–Ferraro in the case of saturated bundles over groups, and that the theorem recovers results such as Kumjian’s Stabilization trick.
Let R be a ring and let $n\ge 2$. We discuss the question of whether every element in the matrix ring $M_n(R)$ is a product of (additive) commutators $[x,y]=xy-yx$, for $x,y\in M_n(R)$. An example showing that this does not always hold, even when R is commutative, is provided. If, however, R has Bass stable rank one, then under various additional conditions every element in $M_n(R)$ is a product of three commutators. Further, if R is a division ring with infinite center, then every element in $M_n(R)$ is a product of two commutators. If R is a field and $a\in M_n(R)$, then every element in $M_n(R)$ is a sum of elements of the form $[a,x][a,y]$ with $x,y\in M_n(R)$ if and only if the degree of the minimal polynomial of a is greater than $2$.
For an integral domain R satisfying certain conditions, we characterise the primitive ideal space and its Jacobson topology for the semigroup crossed product $C^*(R_+) \rtimes R^\times $. We illustrate the result by the example $R=\mathbb {Z}[\sqrt {-3}]$.
We show that for $\mathrm {C}^*$-algebras with the global Glimm property, the rank of every operator can be realized as the rank of a soft operator, that is, an element whose hereditary sub-$\mathrm {C}^*$-algebra has no nonzero, unital quotients. This implies that the radius of comparison of such a $\mathrm {C}^*$-algebra is determined by the soft part of its Cuntz semigroup.
Under a mild additional assumption, we show that every Cuntz class dominates a (unique) largest soft Cuntz class. This defines a retract from the Cuntz semigroup onto its soft part, and it follows that the covering dimensions of these semigroups differ by at most $1$.
By employing the external Kasparov product, in [18], Hawkins, Skalski, White, and Zacharias constructed spectral triples on crossed product C$^\ast $-algebras by equicontinuous actions of discrete groups. They further raised the question for whether their construction turns the respective crossed product into a compact quantum metric space in the sense of Rieffel. By introducing the concept of groups separated with respect to a given length function, we give an affirmative answer in the case of virtually Abelian groups equipped with certain orbit metric length functions. We further complement our results with a discussion of natural examples such as generalized Bunce-Deddens algebras and higher-dimensional noncommutative tori.
Given any unital, finite, classifiable $\mathrm{C}^*$-algebra A with real rank zero and any compact simplex bundle with the fibre at zero being homeomorphic to the space of tracial states on A, we show that there exists a flow on A realizing this simplex. Moreover, we show that given any unital $\mathrm{UCT}$ Kirchberg algebra A and any proper simplex bundle with empty fibre at zero, there exists a flow on A realizing this simplex.
We introduce and study the weak Glimm property for $\mathrm{C}^{*}$-algebras, and also a property we shall call (HS$_0$). We show that the properties of being nowhere scattered and residual (HS$_0$) are equivalent for any $\mathrm{C}^{*}$-algebra. Also, for a $\mathrm{C}^{*}$-algebra with the weak Glimm property, the properties of being purely infinite and weakly purely infinite are equivalent. It follows that for a $\mathrm{C}^{*}$-algebra with the weak Glimm property such that the absolute value of every nonzero, square-zero, element is properly infinite, the properties of being (weakly, locally) purely infinite, nowhere scattered, residual (HS$_0$), residual (HS$_{\text {t}}$), and residual (HI) are all equivalent, and are equivalent to the global Glimm property. This gives a partial affirmative answer to the global Glimm problem, as well as certain open questions raised by Kirchberg and Rørdam.
We describe two kinds of regular invariant measures on the boundary path space $\partial E$ of a second countable topological graph E, which allows us to describe all extremal tracial weights on $C^{*}(E)$ which are not gauge-invariant. Using this description, we prove that all tracial weights on the C$^{*}$-algebra $C^{*}(E)$ of a second countable topological graph E are gauge-invariant when E is free. This in particular implies that all tracial weights on $C^{*}(E)$ are gauge-invariant when $C^{*}(E)$ is simple and separable.
Let A be a separable (not necessarily unital) simple $C^*$-algebra with strict comparison. We show that if A has tracial approximate oscillation zero, then A has stable rank one and the canonical map $\Gamma $ from the Cuntz semigroup of A to the corresponding lower-semicontinuous affine function space is surjective. The converse also holds. As a by-product, we find that a separable simple $C^*$-algebra which has almost stable rank one must have stable rank one, provided it has strict comparison and the canonical map $\Gamma $ is surjective.
In this article, we introduce and study the notion of Goldie dimension for C*-algebras. We prove that a C*-algebra A has Goldie dimension n if and only if the dimension of the center of its local multiplier algebra is n. In this case, A has finite-dimensional center and its primitive spectrum is extremally disconnected. If moreover, A is extending, we show that it decomposes into a direct sum of n prime C*-algebras. In particular, every stably finite, exact C*-algebra with Goldie dimension, that has the projection property and a strictly full element, admits a full projection and a non-zero densely defined lower semi-continuous trace. Finally we show that certain C*-algebras with Goldie dimension (not necessarily simple, separable or nuclear) are classifiable by the Elliott invariant.
We show that the Hilbert bimodule associated with a compact topological graph can be recovered from the $C^*$-algebraic triple consisting of the Toeplitz algebra of the graph, its gauge action and the commutative subalgebra of functions on the vertex space of the graph. We discuss connections with work of Davidson–Katsoulis and of Davidson–Roydor on local conjugacy of topological graphs and isomorphism of their tensor algebras. In particular, we give a direct proof that a compact topological graph can be recovered up to local conjugacy from its Hilbert bimodule, and present an example of nonisomorphic locally conjugate compact topological graphs with isomorphic Hilbert bimodules. We also give an elementary proof that for compact topological graphs with totally disconnected vertex space the notions of local conjugacy, Hilbert bimodule isomorphism, isomorphism of $C^*$-algebraic triples, and isomorphism all coincide.