We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this paper we prove a new generic vanishing theorem for $X$ a complete homogeneous variety with respect to an action of a connected algebraic group. Let $A, B_0\subset X$ be locally closed affine subvarieties, and assume that $B_0$ is smooth and pure dimensional. Let ${\mathcal {P}}$ be a perverse sheaf on $A$ and let $B=g B_0$ be a generic translate of $B_0$. Then our theorem implies $(-1)^{\operatorname {codim} B}\chi (A\cap B, {\mathcal {P}}|_{A\cap B})\geq 0$. As an application, we prove in full generality a positivity conjecture about the signed Euler characteristic of generic triple intersections of Schubert cells. Such Euler characteristics are known to be the structure constants for the multiplication of the Segre–Schwartz–MacPherson classes of these Schubert cells.
We show that, for any prime p, there exist absolutely simple abelian varieties over $\mathbb {Q}$ with arbitrarily large p-torsion in their Tate-Shafarevich groups. To prove this, we construct explicit $\mu _p$-covers of Jacobians of curves of the form $y^p = x(x-1)(x-a)$ which violate the Hasse principle. In the appendix, Tom Fisher explains how to interpret our proof in terms of a Cassels-Tate pairing.
We prove that the $p^\infty$-torsion of the transcendental Brauer group of an abelian variety over a finitely generated field of characteristic $p>0$ is bounded. This answers a (variant of a) question asked by Skorobogatov and Zarhin for abelian varieties. To do this, we prove a ‘flat Tate conjecture’ for divisors. We also study other geometric Galois-invariant $p^\infty$-torsion classes of the Brauer group which are not in the transcendental Brauer group. These classes, in contrast with our main theorem, can be infinitely $p$-divisible. We explain how the existence of these $p$-divisible towers is naturally related to the failure of surjectivity of specialisation morphisms of Néron–Severi groups in characteristic $p$.
Chapter 3 is devoted to the theory of heights, which is fundamental in Diophantine geometry. We explain archimedean and nonarchimedean absolute values on a number field, and prove the product formula. We define the absolute (logarithmic) Weil height. We explain heights associated to line bundles, and prove Northcott’s finiteness theorem. In the latter part of Chapter 3, we briefly introduce abelian varieties and some properties of line bundles on abelian varieties, such as the seesaw theorem and the theorem of cube. We define Neron–Tate height pairings on abelian varieties. We introduce Jacobian varieties and the Abel–Jacobi maps. We prove the Hermite–Minkowski theorem and the Mordell–Weil theorem.
We prove a formula, which, given a principally polarized abelian variety $(A,\lambda )$ over the field of algebraic numbers, relates the stable Faltings height of $A$ with the Néron–Tate height of a symmetric theta divisor on $A$. Our formula completes earlier results due to Bost, Hindry, Autissier and Wagener. The local non-archimedean terms in our formula can be expressed as the tropical moments of the tropicalizations of $(A,\lambda )$.
We compare the Pontryagin duals of fine Selmer groups of two congruent p-adic Galois representations over admissible pro-p, p-adic Lie extensions
$K_\infty $
of number fields K. We prove that in several natural settings the
$\pi $
-primary submodules of the Pontryagin duals are pseudo-isomorphic over the Iwasawa algebra; if the coranks of the fine Selmer groups are not equal, then we can still prove inequalities between the
$\mu $
-invariants. In the special case of a
$\mathbb {Z}_p$
-extension
$K_\infty /K$
, we also compare the Iwasawa
$\lambda $
-invariants of the fine Selmer groups, even in situations where the
$\mu $
-invariants are nonzero. Finally, we prove similar results for certain abelian non-p-extensions.
Let A be a two-dimensional abelian variety defined over a number field K. Fix a prime number
$\ell $
and suppose
$\#A({\mathbf {F}_{\mathfrak {p}}}) \equiv 0 \pmod {\ell ^2}$
for a set of primes
${\mathfrak {p}} \subset {\mathcal {O}_{K}}$
of density 1. When
$\ell =2$
Serre has shown that there does not necessarily exist a K-isogenous
$A'$
such that
$\#A'(K)_{{tor}} \equiv 0 \pmod {4}$
. We extend those results to all odd
$\ell $
and classify the abelian varieties that fail this divisibility principle for torsion in terms of the image of the mod-
$\ell ^2$
representation.
Let K be a complete discrete valuation field of characteristic
$0$
, with not necessarily perfect residue field of characteristic
$p>0$
. We define a Faltings extension of
$\mathcal {O}_K$
over
$\mathbb {Z}_p$
, and we construct a Hodge-Tate filtration for abelian varieties over K by generalizing Fontaine’s construction [Fon82] where he treated the perfect residue field case.
In this note I extend two theorems of Sommese regarding abelian varieties to arbitrary characteristic; that an abelian variety cannot be an ample divisor in a smooth projective variety and that a cone over an abelian variety of dimension at least two is not smoothable.
We extend the Kuga–Satake construction to the case of limit mixed Hodge structures of K3 type. We use this to study the geometry and Hodge theory of degenerations of Kuga–Satake abelian varieties associated with polarized variations of K3 type Hodge structures over the punctured disc.
Let $E$ be an elliptic curve over a field $k$. Let $R:=\operatorname{End}E$. There is a functor $\mathscr{H}\!\mathit{om}_{R}(-,E)$ from the category of finitely presented torsion-free left $R$-modules to the category of abelian varieties isogenous to a power of $E$, and a functor $\operatorname{Hom}(-,E)$ in the opposite direction. We prove necessary and sufficient conditions on $E$ for these functors to be equivalences of categories. We also prove a partial generalization in which $E$ is replaced by a suitable higher-dimensional abelian variety over $\mathbb{F}_{p}$.
We consider the distribution of $p$-power group schemes among the torsion of abelian varieties over finite fields of characteristic $p$, as follows. Fix natural numbers $g$ and $n$, and let ${\it\xi}$ be a non-supersingular principally quasipolarized Barsotti–Tate group of level $n$. We classify the $\mathbb{F}_{q}$-rational forms ${\it\xi}^{{\it\alpha}}$ of ${\it\xi}$. Among all principally polarized abelian varieties $X/\mathbb{F}_{q}$ of dimension $g$ with $X[p^{n}]_{\bar{\mathbb{F}}_{q}}\cong {\it\xi}_{\bar{\mathbb{F}}_{q}}$, we compute the frequency with which $X[p^{n}]\cong {\it\xi}^{{\it\alpha}}$. The error in our estimate is bounded by $D/\sqrt{q}$, where $D$ depends on $g$, $n$, and $p$, but not on ${\it\xi}$.
For certain product varieties, Murre's conjecture on Chow groups is investigated. More precisely, let k be an algebraically closed field, X be a smooth projective variety over k and C be a smooth projective irreducible curve over k with function field K. Then we prove that if X (resp. XK) satisfies Murre's conjectures (A) and (B) for a set of Chow-Künneth projectors {, 0 ≤ i ≤ 2dim X} of X (resp. for {()K} of XK) and if for any j, , then the product variety X × C also satisfies Murre's conjectures (A) and (B). As consequences, it is proved that if C is a curve and X is an elliptic modular threefold over k (an algebraically closed field of characteristic 0) or an abelian variety of dimension 3, then Murre's conjecture (B) is true for the fourfold X × C.
Let $K$ be a finitely generated extension of $\mathbb {Q}$. We consider the family of $\ell $-adic representations ($\ell $ varies through the set of all prime numbers) of the absolute Galois group of $K$, attached to $\ell $-adic cohomology of a separated scheme of finite type over $K$. We prove that the fields cut out from the algebraic closure of $K$by the kernels of the representations of the family are linearly disjoint over a finite extension of K. This gives a positive answer to a question of Serre.
For an abelian variety $A$ over a number field $k$ we discuss the maximal divisible subgroup of ${\mathrm{H} }^{1} (k, A)$ and its intersection with the subgroup Ш$(A/ k)$. The results are most complete for elliptic curves over $ \mathbb{Q} $.
We study the cones of pseudoeffective and nef cycles of higher codimension on the self product of an elliptic curve with complex multiplication, and on the product of a very general abelian surface with itself. In both cases, we find for instance the existence of nef classes that are not pseudoeffective, answering in the negative a question raised by Grothendieck in correspondence with Mumford. We also discuss several problems and questions for further investigation.
Dichotomies in various conjectures from algebraic geometry are in fact occurrences of the dichotomy among Zariski structures. This is what Hrushovski showed and which enabled him to solve, positively, the geometric Mordell–Lang conjecture in positive characteristic. Are we able now to avoid this use of Zariski structures? Pillay and Ziegler have given a direct proof that works for semi-abelian varieties they called ‘very thin’, which include the ordinary abelian varieties. But it does not apply in all generality: we describe here an abelian variety which is not very thin. More generally, we consider from a model-theoretical point of view several questions about the fields of definition of semi-abelian varieties.
We explain three methods for showing that the $p$-adic monodromy of a modular family of abelian varieties is ‘as large as possible', and illustrate them in the case of the ordinary locus of the moduli space of $g$-dimensional principally polarized abelian varieties over a field of characteristic $p$. The first method originated from Ribet's proof of the irreducibility of the Igusa tower for Hilbert modular varieties. The second and third methods both exploit Hecke correspondences near a hypersymmetric point, but in slightly different ways. The third method was inspired by work of Hida, plus a group theoretic argument for the maximality of $\ell$-adic monodromy with $\ell\neq p$.
In this paper we prove a formula relating the Faltings height of an abelian variety $A$ over $\bar{\mathbb{Q}}$ and the Néron–Tate height of a theta divisor on $A$.